Las reacciones de oxido reducción son reacciones de transferencia de electrones.
El siguiente esquema ilustra claramente las consecuencias de tal transferencia de electrones. Se produce una reacción, ilustrada en el sentido directo, dónde las especies modifican su carga eléctrica o Número de Oxidación. ( Revisar el Capítulo 2 )
Los estudiosos han dividido el proceso en dos partes:
OXIDACION: es una pérdida de electrones y la especie que experimenta tal pérdida de electrones aumenta su Número de Oxidación o Carga eléctrica
REDUCCION: es una ganancia de electrones y la especie que experimenta tal ganancia de electrones disminuye su Número de Oxidación o Carga eléctrica
Cada uno de los esquemas muestra la semirreacción que lo representa.
Si las semirreacciones se suman, esto es, 1) se reunen los términos de las ramas izquierdas y se igualan a los términos de las ramas derechas y 2) se cancelan los términos iguales o repetidos a ambos lados de la igualdad. La reacción resultante es la global, la reacción de oxido-reducción o redox.
A0 = A+ + e- Semirreacción de oxidación
B0 + e- = B- Semirreacción de reducción
___________________________________
A0 + B0 + e- = A+ + e- + B-
A0 + B0 = A+ + B-
Toda semirreacción correctamente escrita presenta el correcto......Alineación a la izquierda
a) BALANCE DE MASA ( Ecuación equilibrada, número y tipo de átomos de la izquierda debe ser igual al número y tipo de átomos de la derecha.)
b) BALANCE DE CARGA ( Carga eléctrica total de la izquierda igual a la carga eléctrica total de la derecha ).
REDUCTORES Y OXIDANTES
Completamos esta visión básica de las reacciones de oxido reducción con los conceptos de reductores y oxidantes, de gran importancia teórica y práctica.
LOS POTENCIALES STANDARD
En la Tabla el signo y el valor del potencial standard indican la tendencia y fuerza a que las semirreacciones ocurran. Así la tendencia a la oxidación del Na0 es muy alta ( recordaremos la reacción violenta del sodio metálico con agua) en cambio la tendencia a la oxidación del plata Ag0 es muy baja ( se usa como joyas o adornos). Así el Na0 es un reductor poderoso. El Cloro gaseoso es un oxidante poderoso, mirando la tabla, el potencial de oxidación -1,36 Voltios indica que la reacción inversa, es decir la reducción del Cl0 a Cl- es la tendencia predominante.
Dado tal significado para las semirreacciones y sus potenciales es absolutamente comprensible la presentación de las tablas de semirreacciones y potenciales de reducción, que aparecen en alguna literatura.
Para nosotros , sin embargo, lo expresado tiene el valor operacional siguiente:
" Cuando una semirreacción se invierte; el potencial cambia de signo"
EL POTENCIAL ELECTRICO ASOCIADO A LAS REACCIONES REDOX
Aunque parezca sorprendente, a toda reacción redox se le puede asociar un potencial eléctrico que se deriva precisamente de los potenciales de las semirreacciones que la conforman:
Semirreacción de oxidación A0 = A+ + e- E0A
Semirreacción de reducción B0 + e- = B- -E0B
+_____________________________________________
A0 + B0 = A+ + B- ΔE0 = E0A + ( -E0B )
Por lo tanto a las reacciones redox se les asocia un potencial que es igual a la suma algebraica de los potenciales asociados a cada semirreacción. El significado del ΔE0 deriva del significado de los potenciales de semirreacciones.
El signo indica el sentido de la reacción espontánea y la magnitud indica la fuerza.
LAS PILAS O CELDAS GALVÁNICAS
Corresponden a reacciones redox cuyo potencial eléctrico es positivo, ΔE0 > 0, es decir reacciones que (en el sentido directo) evolucionan espontáneamente liberando energía química a la forma de energía eléctrica.
S. de oxidación A0 (s) = A+a + ae- /*b E0A
S. de reducción B+b + be- = B0 (s) /*a -E0B
S. de oxidación bA0 (s) = bA+a + bae- E0A
S. de reducción aB+b + abe- = aB0 (s) -E0B
+__________________________________________________
bA0(s) + aB+b = bA+a + aB0 (s) ΔE0 = E0A + ( -E0B )
ΔE0 = E0A -E0B pero E0A > E0B
luego ΔE0 > 0
LA ELECTROLISIS
Corresponden a reacciones redox cuyo potencial eléctrico es negativo, ΔE0 <> no evolucionan espontáneamente y que para forzar su ocurrencia se debe gastar energía electrica.
Es exactamente el proceso inverso o contrario que el de una pila
S. de reducción A+a + ae- = A0 (s) /*b - E0A
S. de oxidación B0 (s) = B+b + be- /*a E0B
S. de reducción bA+a + bae- = bA0 (s) - E0A
S. de oxidación aB0 (s) = aB+b + abe- E0B
+__________________________________________________
bA+a + aB0 (s) = bA0(s) + aB+b ΔE0 = E0B + ( -E0A )
ΔE0 = E0B -E0A pero E0A > E0B
luego ΔE0 <>
Como a toda reacción se le puede aplicar la condición de estequiometría, agregando esta vez a la condición, el número de moles de electrones que han circulado respecto de su propio coeficiente estequiométrico.
LA CORROSIÓN DE LOS METALES
La corrosión es en general el deterioro de materiales por acción del medio ambiente. Nos preocuparemos de la corrosión química que afecta principalmente a los metales. Desde luego, los potenciales standard de oxidación indicaran en forma general la tendencia a la corrosión de los diferentes metales. En la práctica hay muchas situaciones especiales como aquella del aluminio que se oxida fácilmente pero que luego la capa de oxido formada, muy compacta, impide posterior corrosión.
La corrosión de metales es consecuencia de reacciones redox entre el metal y agentes químicos presentes en el medio ambiente. La corrosión de fierro y de los aceros en general es de la mayor importancia. Esta corrosión tiene su primera causa en en caracter heterogéneo de los materiales. Las distintas fases tienen potenciales standard de oxidación diferentes y es precisamente este hecho el que provoca la formación de una infinidad de pilas en la superficie del metal con la ayuda de condiciones presentes en el medio ambiente. Las reacciones de estas celdas galvánicas destruyen el material y socavan las estructuras incrementando el efecto corrosivo.
viernes, 25 de diciembre de 2009
"Equilibrio quimico"
CARACTERIZACIÓN CUANTITATIVA DEL EQUILIBRIO QUÍMICO
Recordemos, con la matriz de análisis, los aspectos más sobresalientes del ejemplo de presentación de la situación de equilibrio químico que vimos en la unidad anterior.
Se observa que a partir del momento inicial y en cada instante, las velocidades directa e inversa varían conforme a lo expresan sus respectivas leyes de velocidad. Esto es, si las reacciones directa e inversa quedan expresadas por la ecuación generalizada siguiente y además son elementales ( Estado Transición de un choque)
a A + b B = c C + d D
velocidad instantánea directa = kd [ A ]a [ B ]b disminuye pues [ A ] y [ B ] disminuyen.
velocidad instantánea inversa = ki [ C ]c [ D ]d aumenta pues [ C ] y [ D ] aumentan.
Estas variaciones cesan cuando las velocidades se igualan en valor absoluto y se alcanza la situación de equilibrio en el instante te. De allí en adelante en el tiempo las velocidades no cambian ni tampoco cambian las concentraciones de las especies involucradas en las reacciones.
velocidad instantánea directa = velocidad instantánea inversa ( a partir de te )
kd [ A ]ea [ B ]eb = ki [ C ]ec [ D ]ed (*)
La ecuación (*) sugiere que existe una constante, la constante del equilibrio, K eq, asociada al mismo y que definimos mediante la siguiente expresión:
Al plantear el asunto como definición nos alejamos de consideraciones acerca de mecanismos de las reacciones directa o inversa.
Así y recordando que la expresión muestra concentraciones molares o Molaridades ( moles /L) y si V es el Volumen del sistema :
EQUILIBRIOS QUE COMPROMETEN AL SOLVENTE.
Cuando una reacción involucra al solvente o medio en que se realiza la reacción este no aparece en la constante de equilibrio pues la variación de su concentración como consecuencia de la reacción es irrelevante frente al valor normal de su concentración . Recordemos que el agua pura de densidad 1g/mL o 1000 g/L es 1000/18 moles/L o 55,55 Molar
Ejemplo:
EQUILIBRIOS QUE PRESENTAN COMBINACIÓN DE EXPRESIONES ESPECIALES.
Observemos que la siguiente reacción presenta la combinación de varios casos de situaciones especiales de expresión de constante de equilibrio.
PRINCIPIO DE LE CHATELIER
"Cuando un sistema que se encuentra en la situación de equilibrio químico es sometido a una modificación (por ejemplo una variación de temperatura, variación de la concentración de una de las especies presentes en el equilibrio, variación de la presión u otra ), busca una nueva posición de equilibrio y al hacerlo contrarresta la modificación"
Un sistema varía su temperatura o varía la energía cinética de sus moléculas cuando intercambia ésta energía al interior de las moléculas a la forma de energía potencial o bien la intercambia con el medio ambiente a la forma de calor.
Las diferentes situaciones respecto,
a) del carácter endotérmico o exotérmico de las reacciones,
b) del calentamiento o enfriamiento del sistema en equilibrio,
c) de la conversión de energía potencial en cinética o viceversa al interior del sistema a fin de contrarrestar la modificación de la temperatura y
d) del desplazamiento de la posición del equilibrio con el correspondiente enriquecimiento de los reactivos o productos se indican en el siguiente diagrama.
LOS ACIDOS Y LAS BASES
Ya hemos estudiado varias veces la identidad de los ácidos y las bases y sus reacciones, principalmente las que ocurren en medios acuosos. Repasemos.
Mejor que un nuevo tipo de compuestos habría que señalar que son compuestos que poseen una propiedad relacionada a la reacción de disociación del agua y a los iones que allí son liberados:
H2O
H2O = H + + OH – ión hidrógeno ión hidroxilo
ACIDOS son sustancias de fórmula general HA que se disocian en agua liberando el ión hidrógeno (Definición de Arrehenius)
H2O
HA = H + + A –
ácido ión hidrógeno anión del ácido.
Definición de ácidos y bases según Bronsted y Lowry.
Según estos autores: un ácido es una sustancia que cede H+ y
base es una sustancia que capta H+
luego existen PARES ácido y base CONJUGADOS.
1) ACIDO1H = H+ + BASE1 (Par 1)
2) ACIDO2H = H+ + BASE2 (Par 2)
Así las reacciones reversibles de intercambio de H+ son reacciones de intercambio de H+ entre estos pares ácido base conjugados.
Sumando ramas izquierdas y ramas derechas de la 1) y la 2) invertida y luego cancelando el H+
ACIDO1H = H+ + BASE1
H+ + BASE2 = ACIDO2H
________________________________
ACIDO1H + H+ + BASE2 = H+ + BASE1 + ACIDO2H
ACIDO1H + BASE2 = BASE1 + ACIDO2H
EL pH , EL GRADO α Y EL PORCENTAJE DE DISOCIACIÓN
DE ACIDOS Y BASES DEBILES
Acidos y bases débiles, al igual que las sales insolubles o muy poco solubles, son aquellas que alcanzan la posición de equilibrio a muy poco andar de la reacción de disociación. Los valores de las constantes son 10-2 y menores y los x, grados y % disociación son muy pequeños.
SOLUCIONES REGULADORAS DEL pH O DE EFECTO DE UN IÓN COMÚN
Este un caso donde concurren al menos tres situaciones de las ya estudiadas en este capítulo de equilibrio.
En primer lugar de trata de un caso de disociación de un ácido débil HA cuya constante de disociación se conoce.
Este primer caso se combina con la disolución de una sal completamente soluble de Na+ o K+ pero cuyo anión es el mismo anión que el que tiene el ácido débil , o sea la sal es NaA o KA completamente soluble.
Por tratarse del mismo anión se produce el efecto del ión común cual es desfavorecer la disociación del ácido.
Por último se forma un sistema capaz de resistir, en virtud del principio de Le Chatelier y con gran capacidad, las variaciones del pH inducidas externamente.
Recordemos, con la matriz de análisis, los aspectos más sobresalientes del ejemplo de presentación de la situación de equilibrio químico que vimos en la unidad anterior.
Se observa que a partir del momento inicial y en cada instante, las velocidades directa e inversa varían conforme a lo expresan sus respectivas leyes de velocidad. Esto es, si las reacciones directa e inversa quedan expresadas por la ecuación generalizada siguiente y además son elementales ( Estado Transición de un choque)
a A + b B = c C + d D
velocidad instantánea directa = kd [ A ]a [ B ]b disminuye pues [ A ] y [ B ] disminuyen.
velocidad instantánea inversa = ki [ C ]c [ D ]d aumenta pues [ C ] y [ D ] aumentan.
Estas variaciones cesan cuando las velocidades se igualan en valor absoluto y se alcanza la situación de equilibrio en el instante te. De allí en adelante en el tiempo las velocidades no cambian ni tampoco cambian las concentraciones de las especies involucradas en las reacciones.
velocidad instantánea directa = velocidad instantánea inversa ( a partir de te )
kd [ A ]ea [ B ]eb = ki [ C ]ec [ D ]ed (*)
La ecuación (*) sugiere que existe una constante, la constante del equilibrio, K eq, asociada al mismo y que definimos mediante la siguiente expresión:
Al plantear el asunto como definición nos alejamos de consideraciones acerca de mecanismos de las reacciones directa o inversa.
Así y recordando que la expresión muestra concentraciones molares o Molaridades ( moles /L) y si V es el Volumen del sistema :
EQUILIBRIOS QUE COMPROMETEN AL SOLVENTE.
Cuando una reacción involucra al solvente o medio en que se realiza la reacción este no aparece en la constante de equilibrio pues la variación de su concentración como consecuencia de la reacción es irrelevante frente al valor normal de su concentración . Recordemos que el agua pura de densidad 1g/mL o 1000 g/L es 1000/18 moles/L o 55,55 Molar
Ejemplo:
EQUILIBRIOS QUE PRESENTAN COMBINACIÓN DE EXPRESIONES ESPECIALES.
Observemos que la siguiente reacción presenta la combinación de varios casos de situaciones especiales de expresión de constante de equilibrio.
PRINCIPIO DE LE CHATELIER
"Cuando un sistema que se encuentra en la situación de equilibrio químico es sometido a una modificación (por ejemplo una variación de temperatura, variación de la concentración de una de las especies presentes en el equilibrio, variación de la presión u otra ), busca una nueva posición de equilibrio y al hacerlo contrarresta la modificación"
Un sistema varía su temperatura o varía la energía cinética de sus moléculas cuando intercambia ésta energía al interior de las moléculas a la forma de energía potencial o bien la intercambia con el medio ambiente a la forma de calor.
Las diferentes situaciones respecto,
a) del carácter endotérmico o exotérmico de las reacciones,
b) del calentamiento o enfriamiento del sistema en equilibrio,
c) de la conversión de energía potencial en cinética o viceversa al interior del sistema a fin de contrarrestar la modificación de la temperatura y
d) del desplazamiento de la posición del equilibrio con el correspondiente enriquecimiento de los reactivos o productos se indican en el siguiente diagrama.
LOS ACIDOS Y LAS BASES
Ya hemos estudiado varias veces la identidad de los ácidos y las bases y sus reacciones, principalmente las que ocurren en medios acuosos. Repasemos.
Mejor que un nuevo tipo de compuestos habría que señalar que son compuestos que poseen una propiedad relacionada a la reacción de disociación del agua y a los iones que allí son liberados:
H2O
H2O = H + + OH – ión hidrógeno ión hidroxilo
ACIDOS son sustancias de fórmula general HA que se disocian en agua liberando el ión hidrógeno (Definición de Arrehenius)
H2O
HA = H + + A –
ácido ión hidrógeno anión del ácido.
Definición de ácidos y bases según Bronsted y Lowry.
Según estos autores: un ácido es una sustancia que cede H+ y
base es una sustancia que capta H+
luego existen PARES ácido y base CONJUGADOS.
1) ACIDO1H = H+ + BASE1 (Par 1)
2) ACIDO2H = H+ + BASE2 (Par 2)
Así las reacciones reversibles de intercambio de H+ son reacciones de intercambio de H+ entre estos pares ácido base conjugados.
Sumando ramas izquierdas y ramas derechas de la 1) y la 2) invertida y luego cancelando el H+
ACIDO1H = H+ + BASE1
H+ + BASE2 = ACIDO2H
________________________________
ACIDO1H + H+ + BASE2 = H+ + BASE1 + ACIDO2H
ACIDO1H + BASE2 = BASE1 + ACIDO2H
EL pH , EL GRADO α Y EL PORCENTAJE DE DISOCIACIÓN
DE ACIDOS Y BASES DEBILES
Acidos y bases débiles, al igual que las sales insolubles o muy poco solubles, son aquellas que alcanzan la posición de equilibrio a muy poco andar de la reacción de disociación. Los valores de las constantes son 10-2 y menores y los x, grados y % disociación son muy pequeños.
SOLUCIONES REGULADORAS DEL pH O DE EFECTO DE UN IÓN COMÚN
Este un caso donde concurren al menos tres situaciones de las ya estudiadas en este capítulo de equilibrio.
En primer lugar de trata de un caso de disociación de un ácido débil HA cuya constante de disociación se conoce.
Este primer caso se combina con la disolución de una sal completamente soluble de Na+ o K+ pero cuyo anión es el mismo anión que el que tiene el ácido débil , o sea la sal es NaA o KA completamente soluble.
Por tratarse del mismo anión se produce el efecto del ión común cual es desfavorecer la disociación del ácido.
Por último se forma un sistema capaz de resistir, en virtud del principio de Le Chatelier y con gran capacidad, las variaciones del pH inducidas externamente.
"Magnitudes fundamentales de un cambio quimico"
CALCULOS ESTEQUIOMETRICOS
Se refieren a la determinación de las cantidades de Sustancias ( A,B,C y D ) involucradas en una determinada reacción química.
Sea a A + b B = c C + d D la ecuación de la reacción general, donde a,b,c y d son los respectivos Coeficientes Estequiométricos.
Sean niA , niB ,niC , niD la cantidad de moles de los reactivos y productos en el instante inicial de la reacción (tiempo = 0)
Sean ntA , ntB ,ntC , ntD la cantidad de moles de los reactivos y productos en el instante t desde el momento inicial de la reacción ( tiempo = t )
Transcurrido el tiempo t, cada una de las sustancias ha variado como consecuencia de la reacción, ya sea desapareciendo (Reactivos) o bién apareciendo (Productos) en las siguientes cantidades.
D nA = ntA - niA ; D nB = ntB - niB ; D nC = ntC - niC ; D nD = ntD - niD
Debe notarse que D nA = ntA - niA y D nB = ntB - niB son negativos, porque en el instante t hay menos moles de A y B que al comienzo( porque los reactivos se consumen)
Debe notarse que D nC = ntC - niC y D nD = ntD - niD son positivos, porque en el instante t hay más moles de C y D que al comienzo( porque los productos se originan o aparecen).
La Condición de Estequiometría establece:
- D nA / a = - D nB / b = D nC / c = D nD / d = ..... = X
Es la forma matemática de indicar que cada sustancia reacciona en cantidad de moles que es proporcional al respectivo coeficiente estequiométrico. Las expresión relaciona las cantidades de moles que reaccionan, de todas las sustancias, en todo instante.
¿ Hasta que valor crece R?
Escribamos nuevamente la condición de estequiometría, ahora en función de las cantidades de moles.
- ( ntA - niA) / a = - ( ntB - niB ) / b = ( ntC - niC ) / c = ( ntD - niD) / d = X
X alcanzará su valor máximo ( X L ) cuando la reacción finalice, en el instante final tf .
Se cumplirá que:
(*) - ( nfA - niA) / a = - ( nfB - niB ) / b = ( nfC - niC ) / c = ( nfD - niD) / d = XL
¿Pero cuánto vale XL?
Podemos decir que la reacción finaliza cuando se agota uno de los reactivos, por ejemplo si:
nfA = 0 ( A es el reactivo limitante de la reacción )
- ( 0 - niA) / a = - ( nfB - niB ) / b = ( nfC - niC ) / c = ( nfD - niD) / d = XL A
y XL = XL A = niA / a
en el caso que: nfB = 0 ( B es el reactivo limitante de la reacción )
- ( nfA - niA) / a = - ( 0 - niB ) / b = ( nfC - niC ) / c = ( nfD - niD) / d = XL B
y XL = XL B = niB / b
Se observa que cualquiera sea el caso, el valor de XL se puede determinar por la información disponible en el instante inicial de la reacción y además será el menor de aquellos valores pués siempre debe cumplirse la condición de estequiometría.
De la ecuación (*)
nfA = niA - a XL
nfB = niB - b XL
nfC = niC + c XL
nfD = niD + d XL
LA VALORACIÓN O TITULACIÓN
El análisis químico cuantitativo determina las cantidades de sustancia presentes en distintos sistemas. Lo hace con técnicas de gravimetría, o sea el uso de métodos basados en pesar sustancias en balanzas de precisión. Con técnicas de volumetría, métodos basado en la medición de volumenes de soluciones. Con la espectroscopía, basada en métodos ópticos y electrónicos etc. Las técnicas de la Volumetría descansan fundamentalmente en las denominadas Valoración o Titulación, o sea las que determinan el valor de la concentración o el Título de una solución.
La Titulación o Valoración se basa en una reacción química y por lo tanto habrá tantos tipos de Titulaciones como tipos de reacciones que sirvan a propósitos de cuantificación. Se conocen titulaciones de formación de precipitados, de formación de complejos, de ácidos con bases, de oxido reducción etc.
Como la Titulación tiene propósitos cuantitativos la la ecuación de la reacción involucrada y la CONDICIÓN DE ESTEQUIOMETRÍA que de ella se deriva son los elementos fundamental del asunto.
Estudiaremos el método basándonos en reacciones de neutralización de ácidos con bases y en consecuencia, la comprensión de estas reacciones por parte del alumno es fundamental. Este tipo de reacciones ya las hemos estudiado pero es importante reforzar su manejo.
FACTORES QUE DETERMINAN LAS VELOCIDADES DE REACCIÓN
INFLUENCIA DE LA TEMPERATURA EN LA VELOCIDAD DE REACCION.
Ya sabemos que el estado de transición es un estado de alta energía potencial. Tal energía potencial se alcanza por absorción de radiaciones electromagnéticas o bien, como ocurre en la mayor parte de las reacciones químicas, obtenida por la conversión de la energía cinética ( movimiento) en potencial en el momento del choque entre moléculas.
Sabemos también que la energía cinética de los sistemas moleculares se relaciona o es proporcional a la temperatura. Para tener más claridad al respecto observemos el siguiente gráfico que muestra: a) la distribución de la energía cinética en un sistema de moléculas y b) la variación de tal distribución al aumentar la temperatura del sistema molecular
El gráfico muestra mediante las áreas bajo las curvas el número de moléculas que, a dos temperaturas T1 y T2 donde T2 > T1, no pueden (color blanco) o bien pueden ( color plomo) alcanzar el estado de transición porque no poseen o poseen, respectivamente, la energía cinética transformable en potencial para alcanzar el estado de transición. El límite entre ambas situaciones está marcado precisamente por la magnitud de la energía de activación Ea.
INFLUENCIA DE LA CONCENTRACION EN LA VELOCIDAD DE REACCION.
Desde el punto de vista ya abordado, o sea estados de transición alcanzado por colisiones entre moléculas, resulta también evidente que una molécula que se mueve en un espacio encontrará alta probabilidad de colisionar con otras en la medida que éstas otras se encuentren en alta relación entre el número de ellas y la longitud de su trayectoria.
En términos más simples la probabilidad de choques aumenta al aumentar la concentración de las sustancias reaccionantes. En definitiva la velocidad de las reacciones se incrementa al aumentar la concentración de las sustancia reaccionantes.
Se ha comprobado que en reacciones elementales ( Un sólo estado de transición de sólo un choque) las velocidades siguen las siguientes relaciones según el número de especies involucradas en la colisión.
A Productos velocidad ∞ [ A ] (absorción de ondas electromagnéticas o desintegración radioactiva)
A + B Productos velocidad ∞ [ A ][ B ] (Colisión)
2A Productos velocidad ∞ [ A ] 2 (Colisión)
2A + B Productos velocidad ∞ [ A ] 2 [ B ] (Colisión)
3A Productos velocidad ∞ [ A ] 3 (Colisión) etc.
Donde [ ] significa Concentración Molar o Molaridad ( M (Moles /L))
INFLUENCIA DE LOS CATALIZADORES EN LA VELOCIDAD DE REACCION.
Existe otro factor, de gran importancia desde un punto de vista tecnológico, y es cuando se puede modificar el estado de transición. Al existir un estado de transición diferente, también será diferente la Energía de Activación y esto a su vez modificará radicalmente la velocidad de las reacciones. Existen sustancias, llamadas en general catalizadores, que presentes en un sistema de reacción afectan el estado de transición, la Energía de activación, la velocidad de la reacción pero que en esencia no se modifican pues no participan de la reacción misma.
Hay catalizadores positivos que bajan la energía del estado de transición, hacen que la reacción sea más rápida o bien sólo la hacen más fácil.
Hay catalizadores negativos que suben la energía del estado de transición, hacen que la reacción sea más lenta o bien sólo la dificultan. También a éstos se les llama inhibidores.
Nuestra "temperamental" reacción de formación de H2O a partir de H2 y O2 , tan pasiva a temperatura ambiente y tan explosiva y liberadora de calor en presencia de la chispa eléctrica, evoluciona controladamente en presencia de átomos de platino ( Catalizador ) y se utiliza en celdas productoras de energía eléctrica y agua en las naves espaciales. Entre los átomos de platino se absorben moléculas del H2 que quedan en situación de ser fácilmente colisionadas por las moléculas de O2 dando curso a la reacción. Ha cambiado el estado de transición, que en ausencia del platino, pudiese ser un dificultoso y violento choque triple de moléculas reaccionantes.
Los tres factores recién mencionados son los más importantes determinantes de la velocidad de reacción. También influyen en ésta la naturaleza de las sustancias( la geometría de las moléculas), el estado de división de las muestras, la agitación etc.
Al igual que en la Mecánica en la Cinética Química se trabaja con el concepto de velocidad en un instante o velocidad instantánea
velocidad instantánea = dnR /dt = lim Δ t--> 0 Δ n R / Δ t
y la ley de velocidad es una expresión del tipo:
velocidad instantánea = k [ Reactivos ] orden
Se refieren a la determinación de las cantidades de Sustancias ( A,B,C y D ) involucradas en una determinada reacción química.
Sea a A + b B = c C + d D la ecuación de la reacción general, donde a,b,c y d son los respectivos Coeficientes Estequiométricos.
Sean niA , niB ,niC , niD la cantidad de moles de los reactivos y productos en el instante inicial de la reacción (tiempo = 0)
Sean ntA , ntB ,ntC , ntD la cantidad de moles de los reactivos y productos en el instante t desde el momento inicial de la reacción ( tiempo = t )
Transcurrido el tiempo t, cada una de las sustancias ha variado como consecuencia de la reacción, ya sea desapareciendo (Reactivos) o bién apareciendo (Productos) en las siguientes cantidades.
D nA = ntA - niA ; D nB = ntB - niB ; D nC = ntC - niC ; D nD = ntD - niD
Debe notarse que D nA = ntA - niA y D nB = ntB - niB son negativos, porque en el instante t hay menos moles de A y B que al comienzo( porque los reactivos se consumen)
Debe notarse que D nC = ntC - niC y D nD = ntD - niD son positivos, porque en el instante t hay más moles de C y D que al comienzo( porque los productos se originan o aparecen).
La Condición de Estequiometría establece:
- D nA / a = - D nB / b = D nC / c = D nD / d = ..... = X
Es la forma matemática de indicar que cada sustancia reacciona en cantidad de moles que es proporcional al respectivo coeficiente estequiométrico. Las expresión relaciona las cantidades de moles que reaccionan, de todas las sustancias, en todo instante.
¿ Hasta que valor crece R?
Escribamos nuevamente la condición de estequiometría, ahora en función de las cantidades de moles.
- ( ntA - niA) / a = - ( ntB - niB ) / b = ( ntC - niC ) / c = ( ntD - niD) / d = X
X alcanzará su valor máximo ( X L ) cuando la reacción finalice, en el instante final tf .
Se cumplirá que:
(*) - ( nfA - niA) / a = - ( nfB - niB ) / b = ( nfC - niC ) / c = ( nfD - niD) / d = XL
¿Pero cuánto vale XL?
Podemos decir que la reacción finaliza cuando se agota uno de los reactivos, por ejemplo si:
nfA = 0 ( A es el reactivo limitante de la reacción )
- ( 0 - niA) / a = - ( nfB - niB ) / b = ( nfC - niC ) / c = ( nfD - niD) / d = XL A
y XL = XL A = niA / a
en el caso que: nfB = 0 ( B es el reactivo limitante de la reacción )
- ( nfA - niA) / a = - ( 0 - niB ) / b = ( nfC - niC ) / c = ( nfD - niD) / d = XL B
y XL = XL B = niB / b
Se observa que cualquiera sea el caso, el valor de XL se puede determinar por la información disponible en el instante inicial de la reacción y además será el menor de aquellos valores pués siempre debe cumplirse la condición de estequiometría.
De la ecuación (*)
nfA = niA - a XL
nfB = niB - b XL
nfC = niC + c XL
nfD = niD + d XL
LA VALORACIÓN O TITULACIÓN
El análisis químico cuantitativo determina las cantidades de sustancia presentes en distintos sistemas. Lo hace con técnicas de gravimetría, o sea el uso de métodos basados en pesar sustancias en balanzas de precisión. Con técnicas de volumetría, métodos basado en la medición de volumenes de soluciones. Con la espectroscopía, basada en métodos ópticos y electrónicos etc. Las técnicas de la Volumetría descansan fundamentalmente en las denominadas Valoración o Titulación, o sea las que determinan el valor de la concentración o el Título de una solución.
La Titulación o Valoración se basa en una reacción química y por lo tanto habrá tantos tipos de Titulaciones como tipos de reacciones que sirvan a propósitos de cuantificación. Se conocen titulaciones de formación de precipitados, de formación de complejos, de ácidos con bases, de oxido reducción etc.
Como la Titulación tiene propósitos cuantitativos la la ecuación de la reacción involucrada y la CONDICIÓN DE ESTEQUIOMETRÍA que de ella se deriva son los elementos fundamental del asunto.
Estudiaremos el método basándonos en reacciones de neutralización de ácidos con bases y en consecuencia, la comprensión de estas reacciones por parte del alumno es fundamental. Este tipo de reacciones ya las hemos estudiado pero es importante reforzar su manejo.
FACTORES QUE DETERMINAN LAS VELOCIDADES DE REACCIÓN
INFLUENCIA DE LA TEMPERATURA EN LA VELOCIDAD DE REACCION.
Ya sabemos que el estado de transición es un estado de alta energía potencial. Tal energía potencial se alcanza por absorción de radiaciones electromagnéticas o bien, como ocurre en la mayor parte de las reacciones químicas, obtenida por la conversión de la energía cinética ( movimiento) en potencial en el momento del choque entre moléculas.
Sabemos también que la energía cinética de los sistemas moleculares se relaciona o es proporcional a la temperatura. Para tener más claridad al respecto observemos el siguiente gráfico que muestra: a) la distribución de la energía cinética en un sistema de moléculas y b) la variación de tal distribución al aumentar la temperatura del sistema molecular
El gráfico muestra mediante las áreas bajo las curvas el número de moléculas que, a dos temperaturas T1 y T2 donde T2 > T1, no pueden (color blanco) o bien pueden ( color plomo) alcanzar el estado de transición porque no poseen o poseen, respectivamente, la energía cinética transformable en potencial para alcanzar el estado de transición. El límite entre ambas situaciones está marcado precisamente por la magnitud de la energía de activación Ea.
INFLUENCIA DE LA CONCENTRACION EN LA VELOCIDAD DE REACCION.
Desde el punto de vista ya abordado, o sea estados de transición alcanzado por colisiones entre moléculas, resulta también evidente que una molécula que se mueve en un espacio encontrará alta probabilidad de colisionar con otras en la medida que éstas otras se encuentren en alta relación entre el número de ellas y la longitud de su trayectoria.
En términos más simples la probabilidad de choques aumenta al aumentar la concentración de las sustancias reaccionantes. En definitiva la velocidad de las reacciones se incrementa al aumentar la concentración de las sustancia reaccionantes.
Se ha comprobado que en reacciones elementales ( Un sólo estado de transición de sólo un choque) las velocidades siguen las siguientes relaciones según el número de especies involucradas en la colisión.
A Productos velocidad ∞ [ A ] (absorción de ondas electromagnéticas o desintegración radioactiva)
A + B Productos velocidad ∞ [ A ][ B ] (Colisión)
2A Productos velocidad ∞ [ A ] 2 (Colisión)
2A + B Productos velocidad ∞ [ A ] 2 [ B ] (Colisión)
3A Productos velocidad ∞ [ A ] 3 (Colisión) etc.
Donde [ ] significa Concentración Molar o Molaridad ( M (Moles /L))
INFLUENCIA DE LOS CATALIZADORES EN LA VELOCIDAD DE REACCION.
Existe otro factor, de gran importancia desde un punto de vista tecnológico, y es cuando se puede modificar el estado de transición. Al existir un estado de transición diferente, también será diferente la Energía de Activación y esto a su vez modificará radicalmente la velocidad de las reacciones. Existen sustancias, llamadas en general catalizadores, que presentes en un sistema de reacción afectan el estado de transición, la Energía de activación, la velocidad de la reacción pero que en esencia no se modifican pues no participan de la reacción misma.
Hay catalizadores positivos que bajan la energía del estado de transición, hacen que la reacción sea más rápida o bien sólo la hacen más fácil.
Hay catalizadores negativos que suben la energía del estado de transición, hacen que la reacción sea más lenta o bien sólo la dificultan. También a éstos se les llama inhibidores.
Nuestra "temperamental" reacción de formación de H2O a partir de H2 y O2 , tan pasiva a temperatura ambiente y tan explosiva y liberadora de calor en presencia de la chispa eléctrica, evoluciona controladamente en presencia de átomos de platino ( Catalizador ) y se utiliza en celdas productoras de energía eléctrica y agua en las naves espaciales. Entre los átomos de platino se absorben moléculas del H2 que quedan en situación de ser fácilmente colisionadas por las moléculas de O2 dando curso a la reacción. Ha cambiado el estado de transición, que en ausencia del platino, pudiese ser un dificultoso y violento choque triple de moléculas reaccionantes.
Los tres factores recién mencionados son los más importantes determinantes de la velocidad de reacción. También influyen en ésta la naturaleza de las sustancias( la geometría de las moléculas), el estado de división de las muestras, la agitación etc.
Al igual que en la Mecánica en la Cinética Química se trabaja con el concepto de velocidad en un instante o velocidad instantánea
velocidad instantánea = dnR /dt = lim Δ t--> 0 Δ n R / Δ t
y la ley de velocidad es una expresión del tipo:
velocidad instantánea = k [ Reactivos ] orden
"Soluciones"
Las sustancias presentes en sistemas simples se denominan:
Soluto : Componente (s) que se encuentra (n) , comparativamente, en menor proporción y
Solvente : Componente que se encuentra, comparativamente en mayor proporción.
Sin embargo, cuando una sustancia originalmente sólida es disuelta en líquido es el soluto y el líquido es el solvente.
Similarmente, cuando una sustancia originalmente gas es disuelta en líquido es el soluto y el líquido es el solvente.
Sistemas de Solubilidad infinita
El soluto y el solvente se mezclan en proporciones variables, algunas veces sin limitaciones. Los gases se mezclan entre sí sin limitaciones, los líquidos de igual polaridad o apolaridad también se mezclan sin limitaciones. Son situaciones de solubilidad infinita. El concepto de solubilidad ya ha sido presentado con anterioridad.
Sistemas Saturados
Las limitaciones aparecen con mucha claridad cuando se mezclan sustancia originalmente sólida o bién originalmente gas con líquidos. Estas situaciones límites se analizan fundamentalmente usando el concepto de solubilidad y que ahora parece oportuno volver a recordar.
La solubilidad es la mayor cantidad de soluto, que en forma estable, puede disolverse (mezclarse) en una determinada cantidad de solvente bajo condiciones determinadas de Presión y Temperatura.
Un sistema tiene la cantidad de soluto disuelta correspondiente a la solubilidad cuando no se puede disolver en mayor cantidad aún cuando haya la sustancia en su forma original en contacto con el solvente. En estas condiciones la solución está saturada, y además hay un equilibrio entre la Sustancia original y la Sustancia disuelta. Para que una solución se considere saturada basta que la cantidad de soluto disuelto corresponda a la solubilidad haya o no tal equilibrio..
Sistemas Sobresaturados.
En algunas situaciones la cantidad de soluto disuelta es mayor que la que corresponde a la solubilidad ?, pero es una situación inestable y se conoce como sobresaturación. Se obtienen llevando al sistema a la situación de saturación a alta temperatura y se baja bruscamente la temperatura. Mientras el sistema no se estabilice se encuentra en situación de sobresaturación. El sistema vuelve a la normalidad cuando se den las condiciones cinéticas para que el soluto en exceso precipite como sólido o bién sea liberado como gas.
Sistemas Diluídos.
Son aquellos en que la cantidad de soluto disuelto es menor que la que corresponde por la Solubilidad. Son los casos más numerosos y en torno de ellos se desarrolla el tema de Soluciones y sus propiedades.
LA CONCENTRACION DE LAS SOLUCIONES
La forma usada para caracterizar una solución, luego de especificar el soluto y el solvente, es establecer la relación entre las cantidades de ellos. Esta relación es la Concentración, que implica un cuociente entre una cantidad de soluto y una cantidad de solución, o bien de solvente. Nuevamente por ser la concentración un cuociente entre magnitudes Extensivas es una magnitud Intensiva. Se comprende el caracter intensivo de la concentración, es decir el de una magnitud propia de la solución e independiente de la cantidad de la solución, si pensamos en una bebida de fantasía que tiene siempre las mismas características (color, sabor, concentración), no importando si se adquiere en tamaño individual, mediano o familiar. De lo dicho se infiere que la concentración las soluciones es un concepto de vastísima aplicación ligado al estudio de múltiples sistemas y procesos productivos.
CONVERSIÓN DE UNIDADES DE CONCENTRACIÓN
Una forma de conocer la comprensión y el dominio del tema de soluciones por parte de los alumnos, es plantearles una situación problemática que implique la conversión de las unidades de concentración. Se señala la concentración con una determinada modalidad y algunos otros datos y se pide la concentración en otra modalidad. La mayor dificultad por parte de los alumnos es comprender que para usar y aplicar las ecuaciones enmarcadas, ya entregadas, deben tener una solución, es decir un sistema con todas sus magnitudes extensivas definidas aúnque en un comienzo desconocidas. La información de propiedades Intensivas como la Concentración y la Densidad de la solución es fundamental para el cálculo pero las ecuaciones no operan sólo con ellas. Es preciso darse una base de cálculo que defina el tamaño de un sistema para comenzar a establecer las relaciones que sean de interés. La base de cálculo puede ser cualquiera, pero en este curso se recomienda darse un tamaño de solución dictado por el denominador de la la ecuación de definición de tal forma que el valor numérico (A) de la concentración dada sea igual al valor numérico (A) de la cantidad de soluto en la solución base de cálculo.
Esto es:
Dato inicial Concentración Ecuación de definición Base de calculo Cantidad de soluto
A % p/p % p/p = (MASAsoluto(g) / MASAsolución(g))*100 100g.solución A g.de soluto
A M M = n soluto / V (L) solución 1(L) solución A moles soluto
A m m = n soluto / MASA solvente(Kg) 1Kg. solvente A moles soluto
X soluto = A X soluto = n soluto/(nsoluto + nsolvente) (nsoluto + n solvente) =1 A moles soluto.
PROPIEDADES DE SOLUCIONES
EL ESTADO LIQUIDO
Previo a adentrarse en el tema anunciado es necesario referirse a ciertas propiedades de los sistemas en estado líquido.
Los líquidos se obtienen ya sea por fusión de los sólidos o condensación de los gases, en relación a estos fenómenos veamos unos gráficos...
El primer gráfico muestra una curva de calentamiento de una sustancia pura. Cuando existe una sola fase, la entrega de calor significa incremento de la temperatura de la muestra. Cuando hay dos fases, la energía recibida se ocupa para la transición y la temperatura de mantiene constante. Esta es la temperatura de fusión de la sustancia pura. En teoría, la curva de enfriamiento debe ser la misma. Así se observa para moléculas pequeñas pero raramente coinciden en moléculas de gran tamaño debido a la lentitud en la cinética de la cristalización.
El segundo gráfico muestra el diagrama de fases típico para la transición líquido-gas. Se muestran las isotermas en el diagrama PV y las zonas donde existen las diferentes fases. Se destacan la Tc, Pc y el Vc del punto crítico. La Tc, temperatura crítica es la mayor temperatura a la que una sustancia puede existir en estado líquido. Para el agua la Tc = 374 °C y la Pc = 218 atm.
PROPIEDADES COLIGATIVAS DE SOLUCIONES.
Las propiedades de soluciones que veremos a continuación reciben el nombre de coligativas dado que sus magnitudes dependen de la concentración del soluto, o mejor, del número de partículas o moléculas del soluto en la solución y no de la naturaleza o tipo de soluto.
PRESIÓN OSMOTICA
Un fenómeno de flujo sólo de solvente y nada de soluto a través de membranas semipermeables para disminuir gradientes de concentración es de importancia a nivel celular en organismos biológicos por los efectos de presión que se generan y que afectan las estructuras.
Al comienzo del curso nos referimos al fenómeno de difusión de un soluto para alcanzar la homogeneidad de la solución. ¿Porqué ocurre la difusión? Una respuesta simple puede ser que los sistemas tienden espontáneamente a disminuir o eliminar las diferencias o gradientes de concentración. ¿ Cómo se eliminan los gradientes ? Una primera y familiar respuesta es por la migración del soluto hacia zonas de baja concentración, pero otras veces si el soluto no puede migrar y si puede hacerlo el solvente es éste el que lo hace y en sentido contrario a como la haría el soluto, como ocurre en el caso que exista una membrana semipermeable.
Tales flujos de solvente van acompañados por variaciones positivas o negativas de presión como se señala en el gráfico. La variación de presión se conoce como presión osmótica y se calcula con la expresión que también se indica en el gráfico y que recuerda la ecuación de estado de los gases ideales.
Soluto : Componente (s) que se encuentra (n) , comparativamente, en menor proporción y
Solvente : Componente que se encuentra, comparativamente en mayor proporción.
Sin embargo, cuando una sustancia originalmente sólida es disuelta en líquido es el soluto y el líquido es el solvente.
Similarmente, cuando una sustancia originalmente gas es disuelta en líquido es el soluto y el líquido es el solvente.
Sistemas de Solubilidad infinita
El soluto y el solvente se mezclan en proporciones variables, algunas veces sin limitaciones. Los gases se mezclan entre sí sin limitaciones, los líquidos de igual polaridad o apolaridad también se mezclan sin limitaciones. Son situaciones de solubilidad infinita. El concepto de solubilidad ya ha sido presentado con anterioridad.
Sistemas Saturados
Las limitaciones aparecen con mucha claridad cuando se mezclan sustancia originalmente sólida o bién originalmente gas con líquidos. Estas situaciones límites se analizan fundamentalmente usando el concepto de solubilidad y que ahora parece oportuno volver a recordar.
La solubilidad es la mayor cantidad de soluto, que en forma estable, puede disolverse (mezclarse) en una determinada cantidad de solvente bajo condiciones determinadas de Presión y Temperatura.
Un sistema tiene la cantidad de soluto disuelta correspondiente a la solubilidad cuando no se puede disolver en mayor cantidad aún cuando haya la sustancia en su forma original en contacto con el solvente. En estas condiciones la solución está saturada, y además hay un equilibrio entre la Sustancia original y la Sustancia disuelta. Para que una solución se considere saturada basta que la cantidad de soluto disuelto corresponda a la solubilidad haya o no tal equilibrio..
Sistemas Sobresaturados.
En algunas situaciones la cantidad de soluto disuelta es mayor que la que corresponde a la solubilidad ?, pero es una situación inestable y se conoce como sobresaturación. Se obtienen llevando al sistema a la situación de saturación a alta temperatura y se baja bruscamente la temperatura. Mientras el sistema no se estabilice se encuentra en situación de sobresaturación. El sistema vuelve a la normalidad cuando se den las condiciones cinéticas para que el soluto en exceso precipite como sólido o bién sea liberado como gas.
Sistemas Diluídos.
Son aquellos en que la cantidad de soluto disuelto es menor que la que corresponde por la Solubilidad. Son los casos más numerosos y en torno de ellos se desarrolla el tema de Soluciones y sus propiedades.
LA CONCENTRACION DE LAS SOLUCIONES
La forma usada para caracterizar una solución, luego de especificar el soluto y el solvente, es establecer la relación entre las cantidades de ellos. Esta relación es la Concentración, que implica un cuociente entre una cantidad de soluto y una cantidad de solución, o bien de solvente. Nuevamente por ser la concentración un cuociente entre magnitudes Extensivas es una magnitud Intensiva. Se comprende el caracter intensivo de la concentración, es decir el de una magnitud propia de la solución e independiente de la cantidad de la solución, si pensamos en una bebida de fantasía que tiene siempre las mismas características (color, sabor, concentración), no importando si se adquiere en tamaño individual, mediano o familiar. De lo dicho se infiere que la concentración las soluciones es un concepto de vastísima aplicación ligado al estudio de múltiples sistemas y procesos productivos.
CONVERSIÓN DE UNIDADES DE CONCENTRACIÓN
Una forma de conocer la comprensión y el dominio del tema de soluciones por parte de los alumnos, es plantearles una situación problemática que implique la conversión de las unidades de concentración. Se señala la concentración con una determinada modalidad y algunos otros datos y se pide la concentración en otra modalidad. La mayor dificultad por parte de los alumnos es comprender que para usar y aplicar las ecuaciones enmarcadas, ya entregadas, deben tener una solución, es decir un sistema con todas sus magnitudes extensivas definidas aúnque en un comienzo desconocidas. La información de propiedades Intensivas como la Concentración y la Densidad de la solución es fundamental para el cálculo pero las ecuaciones no operan sólo con ellas. Es preciso darse una base de cálculo que defina el tamaño de un sistema para comenzar a establecer las relaciones que sean de interés. La base de cálculo puede ser cualquiera, pero en este curso se recomienda darse un tamaño de solución dictado por el denominador de la la ecuación de definición de tal forma que el valor numérico (A) de la concentración dada sea igual al valor numérico (A) de la cantidad de soluto en la solución base de cálculo.
Esto es:
Dato inicial Concentración Ecuación de definición Base de calculo Cantidad de soluto
A % p/p % p/p = (MASAsoluto(g) / MASAsolución(g))*100 100g.solución A g.de soluto
A M M = n soluto / V (L) solución 1(L) solución A moles soluto
A m m = n soluto / MASA solvente(Kg) 1Kg. solvente A moles soluto
X soluto = A X soluto = n soluto/(nsoluto + nsolvente) (nsoluto + n solvente) =1 A moles soluto.
PROPIEDADES DE SOLUCIONES
EL ESTADO LIQUIDO
Previo a adentrarse en el tema anunciado es necesario referirse a ciertas propiedades de los sistemas en estado líquido.
Los líquidos se obtienen ya sea por fusión de los sólidos o condensación de los gases, en relación a estos fenómenos veamos unos gráficos...
El primer gráfico muestra una curva de calentamiento de una sustancia pura. Cuando existe una sola fase, la entrega de calor significa incremento de la temperatura de la muestra. Cuando hay dos fases, la energía recibida se ocupa para la transición y la temperatura de mantiene constante. Esta es la temperatura de fusión de la sustancia pura. En teoría, la curva de enfriamiento debe ser la misma. Así se observa para moléculas pequeñas pero raramente coinciden en moléculas de gran tamaño debido a la lentitud en la cinética de la cristalización.
El segundo gráfico muestra el diagrama de fases típico para la transición líquido-gas. Se muestran las isotermas en el diagrama PV y las zonas donde existen las diferentes fases. Se destacan la Tc, Pc y el Vc del punto crítico. La Tc, temperatura crítica es la mayor temperatura a la que una sustancia puede existir en estado líquido. Para el agua la Tc = 374 °C y la Pc = 218 atm.
PROPIEDADES COLIGATIVAS DE SOLUCIONES.
Las propiedades de soluciones que veremos a continuación reciben el nombre de coligativas dado que sus magnitudes dependen de la concentración del soluto, o mejor, del número de partículas o moléculas del soluto en la solución y no de la naturaleza o tipo de soluto.
PRESIÓN OSMOTICA
Un fenómeno de flujo sólo de solvente y nada de soluto a través de membranas semipermeables para disminuir gradientes de concentración es de importancia a nivel celular en organismos biológicos por los efectos de presión que se generan y que afectan las estructuras.
Al comienzo del curso nos referimos al fenómeno de difusión de un soluto para alcanzar la homogeneidad de la solución. ¿Porqué ocurre la difusión? Una respuesta simple puede ser que los sistemas tienden espontáneamente a disminuir o eliminar las diferencias o gradientes de concentración. ¿ Cómo se eliminan los gradientes ? Una primera y familiar respuesta es por la migración del soluto hacia zonas de baja concentración, pero otras veces si el soluto no puede migrar y si puede hacerlo el solvente es éste el que lo hace y en sentido contrario a como la haría el soluto, como ocurre en el caso que exista una membrana semipermeable.
Tales flujos de solvente van acompañados por variaciones positivas o negativas de presión como se señala en el gráfico. La variación de presión se conoce como presión osmótica y se calcula con la expresión que también se indica en el gráfico y que recuerda la ecuación de estado de los gases ideales.
"El concepto de Mol y sus aplicaciones"
Hemos estudiado a la materia en su dimensión submicroscópica, es decir la realidad de átomos y moléculas. Hemos profundizado el estudio de tal forma que incluso hemos comprendido el comportamiento de las propiedades fisico químicas de sustancias puras, éstas, perfectamente perceptibles y medibles en una dimensión macroscópica ( de laboratorio o industria ).
DEFINICIÓN DE MOL
Un Mol es 6,023 10 23 unidades.
Así el mol pasa a ser una forma adecuada de medir cantidades de partículas de la química, como recién lo dijimos, podemos medir cómodamente un mol de átomos de Vanadio o un mol de átomos de cualquier otro elemento en la balanza de una confitería.
El Peso Atómico de un elemento ( A r ) es la masa de un mol de átomos de tal elemento expresada gramos.
Sus unidades de medidas serán por consiguiente gramos / Mol de átomos
Es conveniente comprender la correspondencia entre los elementos del siguiente triángulo de conceptos.
El Peso Molecular ( M r ) de una sustancia es la masa de un mol de moléculas de tal sustancia expresada en gramos.
Sus unidades de medidas serán por consiguiente gramos / Mol de moléculas
Otra vez es conveniente comprender la correspondencia entre los elementos de este nuevo triángulo de conceptos.
NOTACIÓN QUÍMICA
Nivel Submicrocópico Nivel Macroscópico
SÍMBOLO
1 átomo 1 mol de átomos
FÓRMULA
1 molécula 1 mol de moléculas
ECUACIÓN
1 reordenamiento
1 mol de reordenamientos
PROPIEDADES INTENSIVAS Son aquellas propiedades del sistema cuyo valor no depende del tamaño del mismo, es decir son independientes de la masa del sistema.
PROPIEDADES EXTENSIVAS Son aquellas propiedades del sistema cuyo valor sí depende del tamaño del mismo, es decir son dependientes de la masa del sistema.
La composición de un sistema expresada en % en peso es una magnitud INTENSIVA.
Una magnitud intensiva debe poder calcularse con una relación independiente del tamaño del sistema.
% Elemento = (Atomicidad Elemento A r Elemento / M r Sustancia )*100
LA ECUACIÓN DE ESTADO DE LOS GASES IDEALES.
Para dar adecuada respuesta a la pregunta planteada es necesario averiguar las relaciones matemáticas que expresan el comportamiento de las distintas variables que determinan el estado de un sistema gaseoso. Un sistema gaseoso se encuentra en un estado definido cuando, además de precisarse la naturaleza del gas, se conocen tres de las siguientes cuatro variables:
n = Número de moles, V = Volumen, P = Presión y t = temperatura.
Para comenzar el estudio de las relaciones es conveniente definir el Volumen Molar
Volumen Molar = V = V / n (L/mol)
Ley de Boyle
Volumen Molar vs. Presión
Ley de Charles
Volumen Molar vs. temperatura
MÉTODO DE DETERMINACIÓN DEL PESO MOLECULAR
La determinación experimental del valor de Mr es de fundamental importancia cuando no se conoce la fórmula de alguna sustancia. Si la sustancia se puede evaporar podemos aplicar la ecuación anterior pero para calcular el Peso Molecular.
Mr = densidad P,T RT / P
FÓRMULAS EMPÍRICAS Y MOLECULARES
Mostraremos a continuación la forma sistemática de determinar las fórmulas empíricas y las moleculares haciendo uso de los conceptos de Ar y Mr.
ANALISIS QUÍMICO _ Ar__> FÓRMULA EMPÍRICA _Mr_> FÓRMULA MOLECULAR
Composición % Relación en el número de Atomos Número Exacto de átomos
Los datos de composición de un compuesto entregados por el Análisis Químico a la forma de composición porcentual de los elementos, es por lo general, el punto de partida. Como ya hemos establecido éstas magnitudes son de tipo Intensivas. Sin embargo, para poder calcular el número de moles de átomos, que es esencialmente de tipo extensivo, es preciso trabajar con un sistema de tamaño definido y adecuado a los datos y cálculos. Esto es, nos damos una Base de Cálculo (B.C.),por lo general 100 g. de la Sustancia, y así trabajamos con masas determinadas de los diferentes elementos.
Ejemplo: Dada la composición en % que se indica y Ar C = 12 y Ar H = 1
Fórmula Empírica
%
Base de Cálculo. masa elemento (g) N° moles de átomos =
MasaElemento /Ar
Relación entre los números de moles de átomos. Se divide por el menor valor N° de moles de átomos (*)
85,71 % C 100 g. Compuesto 85,71 85,71 / 12 = 7,1425 * 7,1425 / 7,1425 = 1
14,28 % H 14,28 14,28 / 1 = 14,28 14,28 / 7,1425 = 1,999 = 2
Fórmula Molecular
La Fórmula Molecular indica la cantidad exacta de átomos de cada elemento en la molécula. Esa cantidad exacta de átomos debe mantener la proporción observada en la fórmula empírica, por lo tanto, la fórmula Molecular debe ser (CH2 )m donde m es un número entero por determinar.
Si m = 1 Mr CH2 = 14 * 1 (g/mol)
Si m = 2 Mr ( CH2 ) 2 = 14 * 2 (g/mol)
Si m = 3 Mr ( CH2 ) 3 = 14 * 3 (g/mol)
Si m = m Mr ( CH2 ) m = Mr Empírico * m (g/mol)
m = Mr / "Mr" Empírico
DEFINICIÓN DE MOL
Un Mol es 6,023 10 23 unidades.
Así el mol pasa a ser una forma adecuada de medir cantidades de partículas de la química, como recién lo dijimos, podemos medir cómodamente un mol de átomos de Vanadio o un mol de átomos de cualquier otro elemento en la balanza de una confitería.
El Peso Atómico de un elemento ( A r ) es la masa de un mol de átomos de tal elemento expresada gramos.
Sus unidades de medidas serán por consiguiente gramos / Mol de átomos
Es conveniente comprender la correspondencia entre los elementos del siguiente triángulo de conceptos.
El Peso Molecular ( M r ) de una sustancia es la masa de un mol de moléculas de tal sustancia expresada en gramos.
Sus unidades de medidas serán por consiguiente gramos / Mol de moléculas
Otra vez es conveniente comprender la correspondencia entre los elementos de este nuevo triángulo de conceptos.
NOTACIÓN QUÍMICA
Nivel Submicrocópico Nivel Macroscópico
SÍMBOLO
1 átomo 1 mol de átomos
FÓRMULA
1 molécula 1 mol de moléculas
ECUACIÓN
1 reordenamiento
1 mol de reordenamientos
PROPIEDADES INTENSIVAS Son aquellas propiedades del sistema cuyo valor no depende del tamaño del mismo, es decir son independientes de la masa del sistema.
PROPIEDADES EXTENSIVAS Son aquellas propiedades del sistema cuyo valor sí depende del tamaño del mismo, es decir son dependientes de la masa del sistema.
La composición de un sistema expresada en % en peso es una magnitud INTENSIVA.
Una magnitud intensiva debe poder calcularse con una relación independiente del tamaño del sistema.
% Elemento = (Atomicidad Elemento A r Elemento / M r Sustancia )*100
LA ECUACIÓN DE ESTADO DE LOS GASES IDEALES.
Para dar adecuada respuesta a la pregunta planteada es necesario averiguar las relaciones matemáticas que expresan el comportamiento de las distintas variables que determinan el estado de un sistema gaseoso. Un sistema gaseoso se encuentra en un estado definido cuando, además de precisarse la naturaleza del gas, se conocen tres de las siguientes cuatro variables:
n = Número de moles, V = Volumen, P = Presión y t = temperatura.
Para comenzar el estudio de las relaciones es conveniente definir el Volumen Molar
Volumen Molar = V = V / n (L/mol)
Ley de Boyle
Volumen Molar vs. Presión
Ley de Charles
Volumen Molar vs. temperatura
MÉTODO DE DETERMINACIÓN DEL PESO MOLECULAR
La determinación experimental del valor de Mr es de fundamental importancia cuando no se conoce la fórmula de alguna sustancia. Si la sustancia se puede evaporar podemos aplicar la ecuación anterior pero para calcular el Peso Molecular.
Mr = densidad P,T RT / P
FÓRMULAS EMPÍRICAS Y MOLECULARES
Mostraremos a continuación la forma sistemática de determinar las fórmulas empíricas y las moleculares haciendo uso de los conceptos de Ar y Mr.
ANALISIS QUÍMICO _ Ar__> FÓRMULA EMPÍRICA _Mr_> FÓRMULA MOLECULAR
Composición % Relación en el número de Atomos Número Exacto de átomos
Los datos de composición de un compuesto entregados por el Análisis Químico a la forma de composición porcentual de los elementos, es por lo general, el punto de partida. Como ya hemos establecido éstas magnitudes son de tipo Intensivas. Sin embargo, para poder calcular el número de moles de átomos, que es esencialmente de tipo extensivo, es preciso trabajar con un sistema de tamaño definido y adecuado a los datos y cálculos. Esto es, nos damos una Base de Cálculo (B.C.),por lo general 100 g. de la Sustancia, y así trabajamos con masas determinadas de los diferentes elementos.
Ejemplo: Dada la composición en % que se indica y Ar C = 12 y Ar H = 1
Fórmula Empírica
%
Base de Cálculo. masa elemento (g) N° moles de átomos =
MasaElemento /Ar
Relación entre los números de moles de átomos. Se divide por el menor valor N° de moles de átomos (*)
85,71 % C 100 g. Compuesto 85,71 85,71 / 12 = 7,1425 * 7,1425 / 7,1425 = 1
14,28 % H 14,28 14,28 / 1 = 14,28 14,28 / 7,1425 = 1,999 = 2
Fórmula Molecular
La Fórmula Molecular indica la cantidad exacta de átomos de cada elemento en la molécula. Esa cantidad exacta de átomos debe mantener la proporción observada en la fórmula empírica, por lo tanto, la fórmula Molecular debe ser (CH2 )m donde m es un número entero por determinar.
Si m = 1 Mr CH2 = 14 * 1 (g/mol)
Si m = 2 Mr ( CH2 ) 2 = 14 * 2 (g/mol)
Si m = 3 Mr ( CH2 ) 3 = 14 * 3 (g/mol)
Si m = m Mr ( CH2 ) m = Mr Empírico * m (g/mol)
m = Mr / "Mr" Empírico
jueves, 17 de diciembre de 2009
PROPIEDADES FISICOQUIMICAS DE LAS SUSTANCIAS PURAS
Los tipos de enlaces, la direccionalidad de éstos, los rasgos eléctricos y otras características moleculares determinan las propiedades fisicoquímicas de las sustancias.
Parece conveniente referirse en éste momento a la fortaleza comparada de los distintos tipos de enlaces interatómicos. La fortaleza del enlace está dada por la energía necesaria para romper el enlace y ésta a su vez es directamente proporcional a la energía de estabilización o energía liberada cuando el enlace se forma.
El enlace covalente es el más fuerte, lo sigue el iónico y finalmente el metálico que es el más débil.
MOLECULAS GIGANTES
Son arreglos de átomos, unidos mediante fuerzas de enlace químico (interatómico), en que no está definido el tamaño del sistema. Por lo general son arreglos de gran tamaño y de allí el nombre de la categoría. La proporción de distintos átomos se conoce y se representan estos sistemas por su fórmula empírica. La fórmula verdadera es (F.E.) n , pero n es indeterminada.
Hay tres grandes tipos de moléculas gigantes, las de enlace iónico, las de enlace covalente y las de enlace metálico.
COVALENTES TRIDIMENSIONALES
Son arreglos tridimensionales de átomos iguales o diferentes unidos por enlaces covalentes y dispuestos en el espacio siguiendo las reglas de la hibridación. Son las estructuras más rígidas, duras o resistentes que se conocen.
Sus temperaturas de fusión son muy altas ( miles de°C) y en muchos casos se descomponen químicamente por el calor antes de entrar en fusión. Por otra parte la separación de las partículas por acción de moléculas de un solvente es imposible, por lo tanto son completamente insolubles.
El Carbono en su forma de diamante ( hibridación sp3 ) es un ejemplo típico de ésta categoría. Las láminas de Silicio de la nariz del Discovery son otro ejemplo.
COVALENTES BIDIMENSIONALES
Es cuando la red de enlaces covalentes se teje en dos dimensiones. Los mismos conceptos de infusibilidad e insolubilidad que para las mallas trididimensionales pero no así en lo que se refiere a la dureza pues las fuerzas de atracción entre las mallas bidimensionales es débil. Por esa razón estas sustancias son blandas en el sentido del desprendimiento de las mallas.
El ejemplo típico es el Carbono en su forma de grafito en que los C están hibridizados sp2 . Es interesante consignar que en cada orbital pz existen un electrón. Estos electrones se pueden desplazar sobre la malla y en consecuencia el grafito es conductor de la corriente eléctrica.
COVALENTES UNIDIMENSIONALES
Corresponde a las sustancias denominadas polímeros, largas cadenas de unidades conectadas por enlaces covalentes.
Los homopolímeros que repiten unidades iguales (-A-A-A-A-A-A- ; -(A)- n ).
Los copolímeros que repiten unidades distintas ( A-B-A-B-A-B- ; ( -A-B-) n ).
Son cadenas largas llamadas también macromoléculas y por ésta razón es que interaccionan unas con otras de manera significativa. Las interacciones entre macromoléculas son fuerzas de distintos tipos y que veremos más adelante en el caso de moléculas pequeñas.
En los polímeros, en primer término, la fusión y la solubilización están determinadas por la magnitud de las fuerzas de atracción entre las macromoléculas, en principio altas, precisamente por la longitud de las cadenas. Sin embargo, existe un segundo factor determinante, el factor entrópico o desorden que pueden alcanzar las estructuras una vez solubilizadas o fundidas.
Los polímeros flexibles o plegables forman estructuras sólidas bifásicas (cristalinas – amorfas) que son quebradizas, éstas estructuras se pueden disolver o fundir con relativa facilidad pues cuando alcanzan tales estados la macromoléculas están muy enroscadas, plegadas u ovilladas, en suma desordenadas lo que favorece el proceso de separación de las macromoléculas.
En cambio, las macromoléculas rígidas no tienen favorable el factor entrópico y así son dificiles de fundir y solubilizar. Estos polímeros rígidos, en el sólido son monofásicos y de mucha resistencia ( Kevlar).
En la práctica un gran número de macromoléculas se encuentran entre estas dos situaciones extremas y el grado de endurecimiento o ablandamiento depende de las temperaturas a que se encuentran sometidos los sistemas.
Los procesos de ablandamiento sobrevienen en zonas de temperaturas bien definidas para cada tipo de macromoléculas.
Muchas veces las cadenas macromoléculares sintéticas o naturales se conectan entre sí mediante átomos o grupos de átomos enlazados covalentemente ( polímeros reticulados) con propósitos tecnológicos precisos. En estos casos las estructuras resultantes semejan a las redes covalentes bi o tridimensionales y así también son sus propiedades, nula solubilidad y puntos de fusión demasiado elevados que amenazan la estabilidad química de las sustancias.
Copolímero de estireno-butadieno (neumáticos) vulcanizado con S.
Este tipo de productos son difíciles de recuperar y reutilizar ( Reciclaje) precisamente por las razones ya mencionadas y constituyen un problema para la ecología por la contaminación del ambiente.
La celulosa es un polímero natural de características estructurales semirígidas y si a ello agregamos que entre las cadenas macromoleculares existen fuerzas de atracción, de alta magnitud como los puentes de H debido a la presencia de mucho grupos de -OH son comprensibles las dificultades para la fusión y la solubilización.
Estructura tipo celulosa
IONICAS.
En estas moléculas gigantes los átomos están unidos por enlaces iónicos. Es decir son un arreglo de iones positivos y negativos que se disponen alternadamente en el espacio compensando sus cargas . La geometría del arreglo es simple cuando los iones positivos y negativos son monoatómicos y además se encuentran en relación 1:1 como en el caso del Na+Cl -. Cuando los iones son complejos, con grandes diferencias de tamaños o la proporción entre ellos no es simple, los arreglos son complicados y son materia de estudio de la Cristalografía que hace uso de las técnicas de difracción de rayos X para resolver estas situaciones.
Son estructuras de temperatura de fusión elevadas , alrededor de los 1000°C de acuerdo a la fortaleza del enlace iónico. En estado sólido o cristalino, donde los iones se encuentran atrapados no conduce la corriente eléctrica, pero sí la conducen en estado fundido.
Estas estructuras pueden ser solubilizadas, aunque no siempre, mediante solventes con moléculas polares como el caso de agua. Las moléculas del solvente rodean los iones apuntando sus fracciones de carga al ión de carga opuesta. Así los iones solvatados son separados al debilitarse el enlace iónico. De ésta forma los iones disueltos (móviles) constituyen partículas para el flujo eléctrico.
METALICAS
Corresponde al caso de los metales. Los átomos metálicos , al ser muy electropositivos se desprenden de sus electrones de valencia pasando a formar iones positivos. Por su parte los electrones que han perdido su pertenencia a un átomo determinado se mueven entre los iones constituyendo una nube de electrones delocalizados. Esta nube de electrones que une a iones positivos es el enlace metálico.
Ya nos hemos referido a la fortaleza del enlace metálico y podemos generalizar diciendo que los puntos de fusión de los metales son medianamente altos. Señalemos que metales como el Hg, Cs, y Fr son líquidos a temperatura ambiente.
La naturaleza de movilidad del enlace metálico confiere a los metales su blandura, es decir los convierte en dúctiles y maleables.
La movilidad de los electrones se traduce en la capacidad de conducción de la corriente eléctrica y también es responsable de la conductividad térmica.
Es interesante observar la relación entre las conductividades eléctricas y térmicas y la situación de los diagramas de energía de los orbitales llenos y vacíos de metales y no metales. Los metales promueven sus electrones de valencia de orbitales s a los orbitales p vacíos que se encuentran energéticamente cercanos formando éstos últimos orbitales o bandas de conducción. Por el contrario, los no metales tienen los electrones en orbitales p y los orbitales s siguientes vacíos se encuentran energéticamente lejanos por lo que no se produce la promoción y los electrones permanecen ligados a sus respectivos átomos.
MOLECULAS CONVENCIONALES
O SUSTANCIAS MOLECULARES
Son aquellos sistemas formados por moléculas que se encuentran claramente definidas, se conoce el número exacto de átomos y de qué elementos está constituída la molécula. Se representan por las llamadas fórmulas moleculares reales.
En su gran mayoría las moléculas de ésta categoría unen sus átomos con enlaces covalentes y al expresar esto pensamos en muchas moléculas simples formadas entre no metales y en la inmensa cantidad de compuestos orgánicos constituídos principalmente por los elementos C, H, O, N, P, S.
Sin embargo al momento de racionalizar las propiedades fisicoquímicas de este tipo de estructuras, el tipo de enlace interatómico ( covalente) y su fortaleza no cuenta pués en este caso lo determinante son las fuerzas entre moléculas o fuerzas intermoleculares y en algunos casos son fuerzas intramoleculares ( fuerzas dentro de las moléculas; pero no interatómicas o de enlace químico ) las determinantes de las propiedades.
En todo caso las fuerzas intermoleculares son de naturaleza eléctrica, pero las hay de diferente naturaleza y magnitudes pero siempre dependen en definitiva de las características eléctricas, del tamaño y geometría de las moléculas.
En los comentarios generales cabe señalar que estos sistemas no conducen la corriente eléctrica en ningún estado físico y también son malos conductores del calor.
Las fuerzas de Van der Waals son comparativamente las fuerzas intermoleculares de menor intensidad pero pueden existir grandes diferencias de sus magnitudes entre moléculas que las poseen como único factor de atracción.
Estas diferencias pueden ocasionarse por :
a) por significativa diferencia del tamaño de las moléculas.
b) por la presencia de átomos de mucha diferencia en la cantidad de electrones o de muy distinta polarizabilidad electrónica.
c) por la circunstancia de presentar una geometría muy diferente.
Parece conveniente referirse en éste momento a la fortaleza comparada de los distintos tipos de enlaces interatómicos. La fortaleza del enlace está dada por la energía necesaria para romper el enlace y ésta a su vez es directamente proporcional a la energía de estabilización o energía liberada cuando el enlace se forma.
El enlace covalente es el más fuerte, lo sigue el iónico y finalmente el metálico que es el más débil.
MOLECULAS GIGANTES
Son arreglos de átomos, unidos mediante fuerzas de enlace químico (interatómico), en que no está definido el tamaño del sistema. Por lo general son arreglos de gran tamaño y de allí el nombre de la categoría. La proporción de distintos átomos se conoce y se representan estos sistemas por su fórmula empírica. La fórmula verdadera es (F.E.) n , pero n es indeterminada.
Hay tres grandes tipos de moléculas gigantes, las de enlace iónico, las de enlace covalente y las de enlace metálico.
COVALENTES TRIDIMENSIONALES
Son arreglos tridimensionales de átomos iguales o diferentes unidos por enlaces covalentes y dispuestos en el espacio siguiendo las reglas de la hibridación. Son las estructuras más rígidas, duras o resistentes que se conocen.
Sus temperaturas de fusión son muy altas ( miles de°C) y en muchos casos se descomponen químicamente por el calor antes de entrar en fusión. Por otra parte la separación de las partículas por acción de moléculas de un solvente es imposible, por lo tanto son completamente insolubles.
El Carbono en su forma de diamante ( hibridación sp3 ) es un ejemplo típico de ésta categoría. Las láminas de Silicio de la nariz del Discovery son otro ejemplo.
COVALENTES BIDIMENSIONALES
Es cuando la red de enlaces covalentes se teje en dos dimensiones. Los mismos conceptos de infusibilidad e insolubilidad que para las mallas trididimensionales pero no así en lo que se refiere a la dureza pues las fuerzas de atracción entre las mallas bidimensionales es débil. Por esa razón estas sustancias son blandas en el sentido del desprendimiento de las mallas.
El ejemplo típico es el Carbono en su forma de grafito en que los C están hibridizados sp2 . Es interesante consignar que en cada orbital pz existen un electrón. Estos electrones se pueden desplazar sobre la malla y en consecuencia el grafito es conductor de la corriente eléctrica.
COVALENTES UNIDIMENSIONALES
Corresponde a las sustancias denominadas polímeros, largas cadenas de unidades conectadas por enlaces covalentes.
Los homopolímeros que repiten unidades iguales (-A-A-A-A-A-A- ; -(A)- n ).
Los copolímeros que repiten unidades distintas ( A-B-A-B-A-B- ; ( -A-B-) n ).
Son cadenas largas llamadas también macromoléculas y por ésta razón es que interaccionan unas con otras de manera significativa. Las interacciones entre macromoléculas son fuerzas de distintos tipos y que veremos más adelante en el caso de moléculas pequeñas.
En los polímeros, en primer término, la fusión y la solubilización están determinadas por la magnitud de las fuerzas de atracción entre las macromoléculas, en principio altas, precisamente por la longitud de las cadenas. Sin embargo, existe un segundo factor determinante, el factor entrópico o desorden que pueden alcanzar las estructuras una vez solubilizadas o fundidas.
Los polímeros flexibles o plegables forman estructuras sólidas bifásicas (cristalinas – amorfas) que son quebradizas, éstas estructuras se pueden disolver o fundir con relativa facilidad pues cuando alcanzan tales estados la macromoléculas están muy enroscadas, plegadas u ovilladas, en suma desordenadas lo que favorece el proceso de separación de las macromoléculas.
En cambio, las macromoléculas rígidas no tienen favorable el factor entrópico y así son dificiles de fundir y solubilizar. Estos polímeros rígidos, en el sólido son monofásicos y de mucha resistencia ( Kevlar).
En la práctica un gran número de macromoléculas se encuentran entre estas dos situaciones extremas y el grado de endurecimiento o ablandamiento depende de las temperaturas a que se encuentran sometidos los sistemas.
Los procesos de ablandamiento sobrevienen en zonas de temperaturas bien definidas para cada tipo de macromoléculas.
Muchas veces las cadenas macromoléculares sintéticas o naturales se conectan entre sí mediante átomos o grupos de átomos enlazados covalentemente ( polímeros reticulados) con propósitos tecnológicos precisos. En estos casos las estructuras resultantes semejan a las redes covalentes bi o tridimensionales y así también son sus propiedades, nula solubilidad y puntos de fusión demasiado elevados que amenazan la estabilidad química de las sustancias.
Copolímero de estireno-butadieno (neumáticos) vulcanizado con S.
Este tipo de productos son difíciles de recuperar y reutilizar ( Reciclaje) precisamente por las razones ya mencionadas y constituyen un problema para la ecología por la contaminación del ambiente.
La celulosa es un polímero natural de características estructurales semirígidas y si a ello agregamos que entre las cadenas macromoleculares existen fuerzas de atracción, de alta magnitud como los puentes de H debido a la presencia de mucho grupos de -OH son comprensibles las dificultades para la fusión y la solubilización.
Estructura tipo celulosa
IONICAS.
En estas moléculas gigantes los átomos están unidos por enlaces iónicos. Es decir son un arreglo de iones positivos y negativos que se disponen alternadamente en el espacio compensando sus cargas . La geometría del arreglo es simple cuando los iones positivos y negativos son monoatómicos y además se encuentran en relación 1:1 como en el caso del Na+Cl -. Cuando los iones son complejos, con grandes diferencias de tamaños o la proporción entre ellos no es simple, los arreglos son complicados y son materia de estudio de la Cristalografía que hace uso de las técnicas de difracción de rayos X para resolver estas situaciones.
Son estructuras de temperatura de fusión elevadas , alrededor de los 1000°C de acuerdo a la fortaleza del enlace iónico. En estado sólido o cristalino, donde los iones se encuentran atrapados no conduce la corriente eléctrica, pero sí la conducen en estado fundido.
Estas estructuras pueden ser solubilizadas, aunque no siempre, mediante solventes con moléculas polares como el caso de agua. Las moléculas del solvente rodean los iones apuntando sus fracciones de carga al ión de carga opuesta. Así los iones solvatados son separados al debilitarse el enlace iónico. De ésta forma los iones disueltos (móviles) constituyen partículas para el flujo eléctrico.
METALICAS
Corresponde al caso de los metales. Los átomos metálicos , al ser muy electropositivos se desprenden de sus electrones de valencia pasando a formar iones positivos. Por su parte los electrones que han perdido su pertenencia a un átomo determinado se mueven entre los iones constituyendo una nube de electrones delocalizados. Esta nube de electrones que une a iones positivos es el enlace metálico.
Ya nos hemos referido a la fortaleza del enlace metálico y podemos generalizar diciendo que los puntos de fusión de los metales son medianamente altos. Señalemos que metales como el Hg, Cs, y Fr son líquidos a temperatura ambiente.
La naturaleza de movilidad del enlace metálico confiere a los metales su blandura, es decir los convierte en dúctiles y maleables.
La movilidad de los electrones se traduce en la capacidad de conducción de la corriente eléctrica y también es responsable de la conductividad térmica.
Es interesante observar la relación entre las conductividades eléctricas y térmicas y la situación de los diagramas de energía de los orbitales llenos y vacíos de metales y no metales. Los metales promueven sus electrones de valencia de orbitales s a los orbitales p vacíos que se encuentran energéticamente cercanos formando éstos últimos orbitales o bandas de conducción. Por el contrario, los no metales tienen los electrones en orbitales p y los orbitales s siguientes vacíos se encuentran energéticamente lejanos por lo que no se produce la promoción y los electrones permanecen ligados a sus respectivos átomos.
MOLECULAS CONVENCIONALES
O SUSTANCIAS MOLECULARES
Son aquellos sistemas formados por moléculas que se encuentran claramente definidas, se conoce el número exacto de átomos y de qué elementos está constituída la molécula. Se representan por las llamadas fórmulas moleculares reales.
En su gran mayoría las moléculas de ésta categoría unen sus átomos con enlaces covalentes y al expresar esto pensamos en muchas moléculas simples formadas entre no metales y en la inmensa cantidad de compuestos orgánicos constituídos principalmente por los elementos C, H, O, N, P, S.
Sin embargo al momento de racionalizar las propiedades fisicoquímicas de este tipo de estructuras, el tipo de enlace interatómico ( covalente) y su fortaleza no cuenta pués en este caso lo determinante son las fuerzas entre moléculas o fuerzas intermoleculares y en algunos casos son fuerzas intramoleculares ( fuerzas dentro de las moléculas; pero no interatómicas o de enlace químico ) las determinantes de las propiedades.
En todo caso las fuerzas intermoleculares son de naturaleza eléctrica, pero las hay de diferente naturaleza y magnitudes pero siempre dependen en definitiva de las características eléctricas, del tamaño y geometría de las moléculas.
En los comentarios generales cabe señalar que estos sistemas no conducen la corriente eléctrica en ningún estado físico y también son malos conductores del calor.
Las fuerzas de Van der Waals son comparativamente las fuerzas intermoleculares de menor intensidad pero pueden existir grandes diferencias de sus magnitudes entre moléculas que las poseen como único factor de atracción.
Estas diferencias pueden ocasionarse por :
a) por significativa diferencia del tamaño de las moléculas.
b) por la presencia de átomos de mucha diferencia en la cantidad de electrones o de muy distinta polarizabilidad electrónica.
c) por la circunstancia de presentar una geometría muy diferente.
EL ENLACE QUIMICO
El enlace químico es la fuerza que une a los atomos para formar las moléculas.
Como ya se ha dicho es un proceso de estabilización por interacciones electrónicas donde cada átomo trata de alcanzar la configuración electrónica del gas noble más cercano. Por lo general los gases nobles tienen 8 electrones de valencia, de allí se acostumbra a decir que el enlace químico se forma cumpliendo la "regla del octeto".
La energía de estabilización se denomina también la energía de enlace y corresponde además de la energía liberada cuando se forma el enlace a la energía necesaria para romper el enlace.
Aquí es conveniente repasar el concepto de electrones de valencia y su representación mediante la notación de Lewis.
Los electrones de valencia son aquellos que se encuentran en los orbitales de mayor número cuántico principal más aquellos que están en orbitales con el número cuántico principal anterior al mayor a condición de estar incompletos.
TIPOS DE ENLACES Y POLARIDAD DE LOS ENLACES
Existen dos mecanismos para cumplir la regla del octeto.
1.
ENLACE IONICO. Cesión de electrones, de parte de un átomo fuertemente electropositivo a otro fuertemente electronegativo. Formación de iones positivos y negativos y atracción electrostática entre ellos.
2.
ENLACE COVALENTE. Compartición de parejas de electrones entre átomos de parecida o igual electronegatividad. Electrones compartidos con spines opuestos y atracción magnética.
ENLACE COVALENTE DATIVO Y CARGAS FORMALES
Se presenta con relativa frecuencia la situación que para formar un enlace covalente o de compartición, es uno de los átomos participantes del enlace el que aporta la pareja de electrones del enlace. El enlace que se forma se llama covalente dativo y va acompañado de desbalances de cargas eléctricas que deben ser determinados para tener una clara visión de la situación molecular.
Los desbalances de cargas eléctricas se detectan mediante el cálculo de las cargas formales haciendo uso de la siguiente relación:
CF = N° de electrones de valencia - ( N° electrones no enlazantes + 1/2 N° electrones enlazantes )
La I es la más estable ( Regla 3 y 6)
La VI es la más inestable ( Regla 3)
La II y III son más estables que IV y V ( Regla 4)
La II es más estable que la III ( Regla 5 )
La IVs más estable que la V ( Regla 5 )
EL ENLACE QUÍMICO Y LA MECANICA CUANTICA
La Mecánica Cuántica contempla la combinación matemática de las funciones de ondas de orbitales atómicos para dar orbitales moleculares ( pertenecen a la molécula). La combinación produce dos orbitales moleculares.
ENERGÍA DE LOS ORBITALES MOLECULARES ENLAZANTES Y ANTIENLAZANTES EN FUNCIÓN DE LA DISTANCIA INTERATÓMICA
TIPOS DE UNIONES
Los gráficos siguientes además de reforzar los conceptos de orbitales moleculares enlazantes y antienlazantes y sus implicancias desde el punto de vista de la energía nos muestran dos situaciones que apuntan más bién al tipo de orbitales que intervienen o a distintas formas de unión.
Combinación de orbitales atómic
Unión s (sigma)
Orbital Molecular enlazante con superposición de orbitales atómicos sobre linea internuclear
Combinación de orbitales atómicos p.
Unión p (pi)
Orbital Molecular Enlazante con superposición de orbitales atómicos fuera de linea internuclear.
TIPOS DE ENLACES Y UNIONES
CUADRO COMPARATIVO DE ENERGÍAS Y LONGITUDES DE ENLACE
ENLACES C-C C = C H - H C - H C - O C = O
ENERGÍAS DE ENLACE Kcal/mol 83 146 200 104 99 85 179
LONGITUDES DE ENLACE A° 1,54 1,35 1,2 1,07 1,43 1,22
Como ya se ha dicho es un proceso de estabilización por interacciones electrónicas donde cada átomo trata de alcanzar la configuración electrónica del gas noble más cercano. Por lo general los gases nobles tienen 8 electrones de valencia, de allí se acostumbra a decir que el enlace químico se forma cumpliendo la "regla del octeto".
La energía de estabilización se denomina también la energía de enlace y corresponde además de la energía liberada cuando se forma el enlace a la energía necesaria para romper el enlace.
Aquí es conveniente repasar el concepto de electrones de valencia y su representación mediante la notación de Lewis.
Los electrones de valencia son aquellos que se encuentran en los orbitales de mayor número cuántico principal más aquellos que están en orbitales con el número cuántico principal anterior al mayor a condición de estar incompletos.
TIPOS DE ENLACES Y POLARIDAD DE LOS ENLACES
Existen dos mecanismos para cumplir la regla del octeto.
1.
ENLACE IONICO. Cesión de electrones, de parte de un átomo fuertemente electropositivo a otro fuertemente electronegativo. Formación de iones positivos y negativos y atracción electrostática entre ellos.
2.
ENLACE COVALENTE. Compartición de parejas de electrones entre átomos de parecida o igual electronegatividad. Electrones compartidos con spines opuestos y atracción magnética.
ENLACE COVALENTE DATIVO Y CARGAS FORMALES
Se presenta con relativa frecuencia la situación que para formar un enlace covalente o de compartición, es uno de los átomos participantes del enlace el que aporta la pareja de electrones del enlace. El enlace que se forma se llama covalente dativo y va acompañado de desbalances de cargas eléctricas que deben ser determinados para tener una clara visión de la situación molecular.
Los desbalances de cargas eléctricas se detectan mediante el cálculo de las cargas formales haciendo uso de la siguiente relación:
CF = N° de electrones de valencia - ( N° electrones no enlazantes + 1/2 N° electrones enlazantes )
La I es la más estable ( Regla 3 y 6)
La VI es la más inestable ( Regla 3)
La II y III son más estables que IV y V ( Regla 4)
La II es más estable que la III ( Regla 5 )
La IVs más estable que la V ( Regla 5 )
EL ENLACE QUÍMICO Y LA MECANICA CUANTICA
La Mecánica Cuántica contempla la combinación matemática de las funciones de ondas de orbitales atómicos para dar orbitales moleculares ( pertenecen a la molécula). La combinación produce dos orbitales moleculares.
ENERGÍA DE LOS ORBITALES MOLECULARES ENLAZANTES Y ANTIENLAZANTES EN FUNCIÓN DE LA DISTANCIA INTERATÓMICA
TIPOS DE UNIONES
Los gráficos siguientes además de reforzar los conceptos de orbitales moleculares enlazantes y antienlazantes y sus implicancias desde el punto de vista de la energía nos muestran dos situaciones que apuntan más bién al tipo de orbitales que intervienen o a distintas formas de unión.
Combinación de orbitales atómic
Unión s (sigma)
Orbital Molecular enlazante con superposición de orbitales atómicos sobre linea internuclear
Combinación de orbitales atómicos p.
Unión p (pi)
Orbital Molecular Enlazante con superposición de orbitales atómicos fuera de linea internuclear.
TIPOS DE ENLACES Y UNIONES
CUADRO COMPARATIVO DE ENERGÍAS Y LONGITUDES DE ENLACE
ENLACES C-C C = C H - H C - H C - O C = O
ENERGÍAS DE ENLACE Kcal/mol 83 146 200 104 99 85 179
LONGITUDES DE ENLACE A° 1,54 1,35 1,2 1,07 1,43 1,22
PROPIEDADES PERIODICAS DE LOS ELEMENTOS
CUADRO PERIÓDICO
PROPIEDADES PERIODICAS DE LOS ELEMENTOS
La repetición de las configuraciones electrónicas y la consiguiente conformación de un sistema de períodos y grupos es el fenómeno de carácter periódico más relevante. Sin embargo, hay otras propiedades atómicas importantes afectadas de carácter periódico.
El RADIO ATOMICO (R.A.)
Es la distancia entre el núcleo del átomo y el electrón periférico.
El siguiente gráfico muestra elocuentemente la variación periódica del Radio Atómico al avanzar el Número Atómico en los elementos. Se observa que los picks de mayor Radio Atómico corresponde a los metales alcalinos.
El RadioAtómico disminuye "suavemente" al Aumentar Z en un Período. Si bién los electrones están similar orbital, la carga positiva del nucleo se incrementa ejerciendo progresivamente mayor atracción sobre los electrones. Se muestra la situación observando los electrones periféricos (dibujados en amarillo) en orbitales 2p para elementos del 2° Período.
B C N O F Ne
El Radio Atómico aumenta "bruscamente" al aumentar Z en un Grupo o familia. Los electrones periféricos se encuentra en un orbital del mismo tipo pero en el nivel siguiente. Para comprender la situación hay que recordar que, por un lado, el radio de la órbita en el átomo de Bohr o volumen del orbital en el átomo de Hidrógeno es proporcional al cuadrado de n. Por otro lado, también hay que tener presente que el aumento de Z significa mayor atracción sobre los electrones. Predomina el primer efecto pero atenuado por el segundo factor.
Los iones son atomos cargados eléctricamente que resultan de ganar o perder electrones.El Radio de lo iones es diferente al de los atomos neutros. Los iones negativos ( ganan electrones) son de mayor Radio, en cambio los positivos, ( pierden electrones) son menor Radio.
Diagrama de radios atómicos y radios iónicos
tomado del Merrill Química (Smoot,Price,Smith pág 183 )
Las estructuras isoelectrónicas, son iones positivos o negativos o bien átomos neutros que poseen igual configuración electrónica ( igual número de electrones ). Puede pensarse, que por ésta razón, el Radio de las estructuras isoelectrónicas debe ser el mismo. No es así, pues, al igual que acontece con la disminución de los radios en un Período, la carga positiva en el nucleo es diferente. A mayor Z menor Radio.
__________________>
Menor Radio
S –2 Cl -1 Ar 0 K + Ca +2
EL POTENCIAL DE IONIZACIÓN ( P . I .)
Es la Energía que se necesita para arrancar el electrón periférico a un átomo neutro libre.
A 0 (g) + POTENCIAL DE IONIZACIÓN = A+ 1 (g) + e-
Mientras más cercano al nucleo, el electrón periférico es atraído con mayor fuerza y viciversa. En consecuencia la magnitud de la Energía de Ionización se comporta en forma inversa a la del Radio Atómico.
LA ELECTROAFINIDAD ( E . A .)
Es la Energía que se libera cuando un átomo libre y neutro capta un electrón .
A 0 (g) + e- = A-1 (g) + ELECTROAFINIDAD
Mientras más cercano al nucleo, el electrón periférico es atraído con mayor fuerza y viciversa. En consecuencia la magnitud de la Electroafinidad se comporta en forma inversa a la del Radio Atómico .
No cuenta para los gases nobles
LA ELECTRONEGATIVIDAD ( E. N.)
La Electronegatividad es una magnitud que engloba tanto al P.I como a la E.A. y, en consecuencia, es proporcional a ambas. De la misma forma que las magnitudes anteriores se comporta en forma inversa al Radio Atómico
Mide la tendencia a formar iones negativos o bien la capacidad de atraer electrones.
La electronegatividad máxima es la del Fluor e igual a 4. No cuenta para los gases nobles.
LA ELECTROPOSITIVIDAD ( E . P .)
La Electropositividad es una magnitud de sentido inverso de la E. N.
Mide la tendencia a formar iones positivos o bien la capacidad de perder, ceder o repeler electrones.
Tampoco cuenta para los gases nobles
RESUMEN
TENDENCIAS DE LAS MAGNITUDES
DE LA PROPIEDADES EN EL SISTEMA PERIODICO
MAS INFORMACIÓN ACERCA DEL SISTEMA PERIÓDICO Y DE LOS ELEMENTOS
LA FORMACIÓN DE LOS IONES
Las propiedades periódicas recién estudiadas y sus variaciones en el ordenamiento del Sistema Periódico apuntan a un hecho de singular importancia para el comportamiento químico de los distintos elementos. Esta es la situación de estabilidad, sinónimo de baja energía, de los sistemas electrónicos de los gases nobles. Estos sistemas tienen sus orbitales comprometidos, completos de electrones. La circunstancia que las moléculas de gases nobles son monoatómicas son la prueba de tal estabilidad, es decir, los átomos de los gases nobles no realizan intercambios electrónicos ni para formar iones ni para unirse con otros átomos pues sus configuraciones electrónicas son estables.
Tal concepto es reafirmado y a la vez explica el comportamiento de los átomos de los otros elementos. Estos realizan transferencias electrónicas para formar iones o formar moléculas de tal forma de alcanzar la configuración electrónica del gas noble más cercano. El tener niveles o subniveles electrónicos completos de electrones caracteriza el comportamiento de intercambio electrónico de los átomos de los distintos elementos.
Es así que los atomos ganan o pierden determinadas cantidades de electrones para completar niveles o subniveles alcanzando ciertas cargas eléctricas o estados de oxidación.
A continuación se señalan los estados de oxidación para átomos de elementos de presencia más corriente en un ordenamiento de grupos que, en parte, recuerda al del Sistema Periódico.
H +1 (-1) He0
Li +1 Be +2 B+3 C -4+2+4 N –3 (+1)+3 (+4)+5 O –2 F -1 Ne0
Na+1 Mg+2 Al+3 Si -4+2+4 P –3+3+5 S –2+2+4+6 Cl -1+1+3+5+7 Ar0
K +1 Ca +2 Br -1+1+3+5+7 Kr0
Rb+1 Sr +2 I -1+1+3+5+7 Xe0
Cs+1 Ba +2 Cr+3+6 Mn +2+4+6+7 Fe +2+3 Co+2 Ni +2 Cu (+1) +2 Zn +2 Rn0
Fr +1 Ra +2 Hg (+1)+2 Cd +2 Ag+1 Au +1+3 Pb +2+4 Sn+2+4
LA FORMACION DE LAS MOLECULAS
La formación de los iones o bién alcanzar ciertos estados de oxidación hay que observarlo como un proceso asociado entre distintos átomos y que conduce a la formación de las moléculas de las diferentes Sustancias Puras. Las fórmulas (atomicidades) de aquellas moléculas puede deducirse teniendo en cuenta el estado de oxidación de los iones estabilizados y fundamentalmente la necesidad que la estructura molecular resultante sea eléctricamente neutra. La atomicidad de un elemento se obtiene tomando en primer término el valor absoluto del estado de oxidación del átomo del otro elemento y viciversa, luego aquellas atomicidades se simplifican, de ser posible, llegándose a las definitivas.
M+m n N -n m
M = Metal N = No Metal
TIPOS DE COMPUESTOS FUNDAMENTALES
SU OBTENCIÓN FORMAL Y DENOMINACIÓN ACTUAL Y ANTIGUA
OXIDOS METALICOS
M 0 + O 0 2 ________ > M +m 2 O –2m
Ejemplos: Cu +12 O –2 Oxido de cobre I , antes Oxido cuproso
Cu +2 O –2 Oxido de cobre II , antes Oxido cúprico
OXIDOS NO METALICOS ( antes ANHIDRIDOS)
N 0 + O 0 2 _________> N +n2 O –2n
Ejemplos: C +2 O –2 Oxido de carbono II , antes Anhidrído carbonoso
C +4 O –22 Oxido de carbono IV, antes Anhidrído carbónico
Como se puede observar, la denominación antigua que es muy persistente, depende del Número de Oxidación con que interviene el elemento. Esta nomenclatura usa prefijos y terminaciones alrededor de la raíz del nombre del elemento de acuerdo al número de estados de oxidación que posee el elemento y a la posición, entre éstos, del número de oxidación en uso.
Así:
Número de estados 1 2 3 4
de Oxidación
hipo ------ oso hipo ------ oso
------- ------oso ------ oso ------ oso
-------ico ------ ico ------ ico
per ------ ico
------- = raíz del nombre del elemento
LOS HIDRÓXIDOS (OXIDO METALICO+ AGUA)
M +m2 O -2m + m H+12 O-2 = 2 M+m ( O-2 H+1)m
Ejemplo:
Al +32 O -23 + 3 H+12 O-2 = 2 Al+3 ( O-2 H+1)3 ( Al ( OH)3 )
Oxido de Aluminio Hidróxido de Aluminio
LOS OXACIDOS ( OXIDO NO METALICO + AGUA)
N +n 2 O -2n + H+12 O -2 = H+12 N+n2 O-2n+1
Ejemplo:
S+6 O-2 3 + H+12 O–2 = H+12 S+6 O-24 ( H2 S O4 )
Anhídrido Sulfúrico Acido Sulfúrico
LOS HIDRACIDOS (HIDROGENO +NO METALES)
n H 02 + N 02 = 2 H+1n N – n
Ejemplo:
n H 02 + S 02 = 2 H+12 S – 2 ( H2 S )
Acido Sulf hídrico
LOS ACIDOS Y LAS BASES
Mejor que un nuevo tipo de compuestos habría que señalar que son compuestos que poseen una propiedad relacionada a la reacción de disociación del agua y a los iones que allí son liberados:
H2O
H2O = H + + OH –
ión hidrógeno ión hidroxilo
ACIDOS son sustancias de fórmula general HA que se disocian en agua liberando el ión hidrógeno
H2O
HA = H + + A –
ácido ión hidrógeno anión del ácido
Así se comportan los oxácidos y los hidrácidos:
Ejemplos:
H 2 S O 4 = 2 H + + SO4 –2
Ácido sulfúr ico Anión sulf ato (1)
Observar como la denominación del ácido se transforma para el anión
oso _____________> ito
ico _____________> ato
H 2 S = 2 H + + S –2
Ácido sulf hídrico Anión sulf uro
Observar como la denominación del ácido se transforma para el anión
hídrico ___________> uro
BASES son sustancias de fórmula general BOH que se disocian en agua liberando el ión hidroxilo.
H20
BOH = B + + OH –
base catión de la base ión hidroxilo
Así se comportan los hidróxidos:
Ejemplo:
u ( O H ) 2 = Cu+2 + 2 OH -
catión cúprico (1)
1. Anión es un ión de carga negativa y Catión es un ión de carga positiva. Los nombres provienen de la Electroquímica
LAS SALES ( RESULTADO DE LA REACCION DE ACIDOS + BASES)
OXÁCIDOS + BASES = SAL + AGUA
m H+12 N+n2 O-2n+1 + 2 M+m ( O H )- m = M+m2 ( ( N+n2 O-2n+1 ) –2)m + 2m H2O
Ejemplo:
3 H+12 S+6 O -24 + 2 Al+3 ( O H)-3 = Al+32 ((S+6 O –24) -2)3 + 6 H2O
( 3 H2 S O4 + 2 Al ( O H) 3 = Al 2 (S O4) 3 + 6 H2O )
Acido Sulfúrico Hidróxido de Aluminio Sulfato de Aluminio Agua
HIDRACIDOS + BASES = SAL + AGUA
m H+1n N – n + n M+m ( O H )– m = M+mn N – nm + mn H 2 O
Ejemplo:
H+12 S–2 + 2 Al+3 ( O H ) -3 = Al +32 S– 23 + 6 H 2 0
( H2 S + 2 Al (OH )-3 = Al2 S3 + 6 H 2 0 )
Acido Sulfhídrico Hidróxido de Aluminio Sulfuro deAluminio Agua
LOS HIDRUROS ( IONES METALICOS CON IONES HIDRUROS)
M0 + m /2 H02 = M+m H -m
Ejemplo:
Mg0 + H02 = Mg+2 H–2 ( Mg H2 )
CUADRO PERIÓDICO
PROPIEDADES PERIODICAS DE LOS ELEMENTOS
La repetición de las configuraciones electrónicas y la consiguiente conformación de un sistema de períodos y grupos es el fenómeno de carácter periódico más relevante. Sin embargo, hay otras propiedades atómicas importantes afectadas de carácter periódico.
El RADIO ATOMICO (R.A.)
Es la distancia entre el núcleo del átomo y el electrón periférico.
El siguiente gráfico muestra elocuentemente la variación periódica del Radio Atómico al avanzar el Número Atómico en los elementos. Se observa que los picks de mayor Radio Atómico corresponde a los metales alcalinos.
El RadioAtómico disminuye "suavemente" al Aumentar Z en un Período. Si bién los electrones están similar orbital, la carga positiva del nucleo se incrementa ejerciendo progresivamente mayor atracción sobre los electrones. Se muestra la situación observando los electrones periféricos (dibujados en amarillo) en orbitales 2p para elementos del 2° Período.
B C N O F Ne
El Radio Atómico aumenta "bruscamente" al aumentar Z en un Grupo o familia. Los electrones periféricos se encuentra en un orbital del mismo tipo pero en el nivel siguiente. Para comprender la situación hay que recordar que, por un lado, el radio de la órbita en el átomo de Bohr o volumen del orbital en el átomo de Hidrógeno es proporcional al cuadrado de n. Por otro lado, también hay que tener presente que el aumento de Z significa mayor atracción sobre los electrones. Predomina el primer efecto pero atenuado por el segundo factor.
Los iones son atomos cargados eléctricamente que resultan de ganar o perder electrones.El Radio de lo iones es diferente al de los atomos neutros. Los iones negativos ( ganan electrones) son de mayor Radio, en cambio los positivos, ( pierden electrones) son menor Radio.
Diagrama de radios atómicos y radios iónicos
tomado del Merrill Química (Smoot,Price,Smith pág 183 )
Las estructuras isoelectrónicas, son iones positivos o negativos o bien átomos neutros que poseen igual configuración electrónica ( igual número de electrones ). Puede pensarse, que por ésta razón, el Radio de las estructuras isoelectrónicas debe ser el mismo. No es así, pues, al igual que acontece con la disminución de los radios en un Período, la carga positiva en el nucleo es diferente. A mayor Z menor Radio.
__________________>
Menor Radio
S –2 Cl -1 Ar 0 K + Ca +2
EL POTENCIAL DE IONIZACIÓN ( P . I .)
Es la Energía que se necesita para arrancar el electrón periférico a un átomo neutro libre.
A 0 (g) + POTENCIAL DE IONIZACIÓN = A+ 1 (g) + e-
Mientras más cercano al nucleo, el electrón periférico es atraído con mayor fuerza y viciversa. En consecuencia la magnitud de la Energía de Ionización se comporta en forma inversa a la del Radio Atómico.
LA ELECTROAFINIDAD ( E . A .)
Es la Energía que se libera cuando un átomo libre y neutro capta un electrón .
A 0 (g) + e- = A-1 (g) + ELECTROAFINIDAD
Mientras más cercano al nucleo, el electrón periférico es atraído con mayor fuerza y viciversa. En consecuencia la magnitud de la Electroafinidad se comporta en forma inversa a la del Radio Atómico .
No cuenta para los gases nobles
LA ELECTRONEGATIVIDAD ( E. N.)
La Electronegatividad es una magnitud que engloba tanto al P.I como a la E.A. y, en consecuencia, es proporcional a ambas. De la misma forma que las magnitudes anteriores se comporta en forma inversa al Radio Atómico
Mide la tendencia a formar iones negativos o bien la capacidad de atraer electrones.
La electronegatividad máxima es la del Fluor e igual a 4. No cuenta para los gases nobles.
LA ELECTROPOSITIVIDAD ( E . P .)
La Electropositividad es una magnitud de sentido inverso de la E. N.
Mide la tendencia a formar iones positivos o bien la capacidad de perder, ceder o repeler electrones.
Tampoco cuenta para los gases nobles
RESUMEN
TENDENCIAS DE LAS MAGNITUDES
DE LA PROPIEDADES EN EL SISTEMA PERIODICO
MAS INFORMACIÓN ACERCA DEL SISTEMA PERIÓDICO Y DE LOS ELEMENTOS
LA FORMACIÓN DE LOS IONES
Las propiedades periódicas recién estudiadas y sus variaciones en el ordenamiento del Sistema Periódico apuntan a un hecho de singular importancia para el comportamiento químico de los distintos elementos. Esta es la situación de estabilidad, sinónimo de baja energía, de los sistemas electrónicos de los gases nobles. Estos sistemas tienen sus orbitales comprometidos, completos de electrones. La circunstancia que las moléculas de gases nobles son monoatómicas son la prueba de tal estabilidad, es decir, los átomos de los gases nobles no realizan intercambios electrónicos ni para formar iones ni para unirse con otros átomos pues sus configuraciones electrónicas son estables.
Tal concepto es reafirmado y a la vez explica el comportamiento de los átomos de los otros elementos. Estos realizan transferencias electrónicas para formar iones o formar moléculas de tal forma de alcanzar la configuración electrónica del gas noble más cercano. El tener niveles o subniveles electrónicos completos de electrones caracteriza el comportamiento de intercambio electrónico de los átomos de los distintos elementos.
Es así que los atomos ganan o pierden determinadas cantidades de electrones para completar niveles o subniveles alcanzando ciertas cargas eléctricas o estados de oxidación.
A continuación se señalan los estados de oxidación para átomos de elementos de presencia más corriente en un ordenamiento de grupos que, en parte, recuerda al del Sistema Periódico.
H +1 (-1) He0
Li +1 Be +2 B+3 C -4+2+4 N –3 (+1)+3 (+4)+5 O –2 F -1 Ne0
Na+1 Mg+2 Al+3 Si -4+2+4 P –3+3+5 S –2+2+4+6 Cl -1+1+3+5+7 Ar0
K +1 Ca +2 Br -1+1+3+5+7 Kr0
Rb+1 Sr +2 I -1+1+3+5+7 Xe0
Cs+1 Ba +2 Cr+3+6 Mn +2+4+6+7 Fe +2+3 Co+2 Ni +2 Cu (+1) +2 Zn +2 Rn0
Fr +1 Ra +2 Hg (+1)+2 Cd +2 Ag+1 Au +1+3 Pb +2+4 Sn+2+4
LA FORMACION DE LAS MOLECULAS
La formación de los iones o bién alcanzar ciertos estados de oxidación hay que observarlo como un proceso asociado entre distintos átomos y que conduce a la formación de las moléculas de las diferentes Sustancias Puras. Las fórmulas (atomicidades) de aquellas moléculas puede deducirse teniendo en cuenta el estado de oxidación de los iones estabilizados y fundamentalmente la necesidad que la estructura molecular resultante sea eléctricamente neutra. La atomicidad de un elemento se obtiene tomando en primer término el valor absoluto del estado de oxidación del átomo del otro elemento y viciversa, luego aquellas atomicidades se simplifican, de ser posible, llegándose a las definitivas.
M+m n N -n m
M = Metal N = No Metal
TIPOS DE COMPUESTOS FUNDAMENTALES
SU OBTENCIÓN FORMAL Y DENOMINACIÓN ACTUAL Y ANTIGUA
OXIDOS METALICOS
M 0 + O 0 2 ________ > M +m 2 O –2m
Ejemplos: Cu +12 O –2 Oxido de cobre I , antes Oxido cuproso
Cu +2 O –2 Oxido de cobre II , antes Oxido cúprico
OXIDOS NO METALICOS ( antes ANHIDRIDOS)
N 0 + O 0 2 _________> N +n2 O –2n
Ejemplos: C +2 O –2 Oxido de carbono II , antes Anhidrído carbonoso
C +4 O –22 Oxido de carbono IV, antes Anhidrído carbónico
Como se puede observar, la denominación antigua que es muy persistente, depende del Número de Oxidación con que interviene el elemento. Esta nomenclatura usa prefijos y terminaciones alrededor de la raíz del nombre del elemento de acuerdo al número de estados de oxidación que posee el elemento y a la posición, entre éstos, del número de oxidación en uso.
Así:
Número de estados 1 2 3 4
de Oxidación
hipo ------ oso hipo ------ oso
------- ------oso ------ oso ------ oso
-------ico ------ ico ------ ico
per ------ ico
------- = raíz del nombre del elemento
LOS HIDRÓXIDOS (OXIDO METALICO+ AGUA)
M +m2 O -2m + m H+12 O-2 = 2 M+m ( O-2 H+1)m
Ejemplo:
Al +32 O -23 + 3 H+12 O-2 = 2 Al+3 ( O-2 H+1)3 ( Al ( OH)3 )
Oxido de Aluminio Hidróxido de Aluminio
LOS OXACIDOS ( OXIDO NO METALICO + AGUA)
N +n 2 O -2n + H+12 O -2 = H+12 N+n2 O-2n+1
Ejemplo:
S+6 O-2 3 + H+12 O–2 = H+12 S+6 O-24 ( H2 S O4 )
Anhídrido Sulfúrico Acido Sulfúrico
LOS HIDRACIDOS (HIDROGENO +NO METALES)
n H 02 + N 02 = 2 H+1n N – n
Ejemplo:
n H 02 + S 02 = 2 H+12 S – 2 ( H2 S )
Acido Sulf hídrico
LOS ACIDOS Y LAS BASES
Mejor que un nuevo tipo de compuestos habría que señalar que son compuestos que poseen una propiedad relacionada a la reacción de disociación del agua y a los iones que allí son liberados:
H2O
H2O = H + + OH –
ión hidrógeno ión hidroxilo
ACIDOS son sustancias de fórmula general HA que se disocian en agua liberando el ión hidrógeno
H2O
HA = H + + A –
ácido ión hidrógeno anión del ácido
Así se comportan los oxácidos y los hidrácidos:
Ejemplos:
H 2 S O 4 = 2 H + + SO4 –2
Ácido sulfúr ico Anión sulf ato (1)
Observar como la denominación del ácido se transforma para el anión
oso _____________> ito
ico _____________> ato
H 2 S = 2 H + + S –2
Ácido sulf hídrico Anión sulf uro
Observar como la denominación del ácido se transforma para el anión
hídrico ___________> uro
BASES son sustancias de fórmula general BOH que se disocian en agua liberando el ión hidroxilo.
H20
BOH = B + + OH –
base catión de la base ión hidroxilo
Así se comportan los hidróxidos:
Ejemplo:
u ( O H ) 2 = Cu+2 + 2 OH -
catión cúprico (1)
1. Anión es un ión de carga negativa y Catión es un ión de carga positiva. Los nombres provienen de la Electroquímica
LAS SALES ( RESULTADO DE LA REACCION DE ACIDOS + BASES)
OXÁCIDOS + BASES = SAL + AGUA
m H+12 N+n2 O-2n+1 + 2 M+m ( O H )- m = M+m2 ( ( N+n2 O-2n+1 ) –2)m + 2m H2O
Ejemplo:
3 H+12 S+6 O -24 + 2 Al+3 ( O H)-3 = Al+32 ((S+6 O –24) -2)3 + 6 H2O
( 3 H2 S O4 + 2 Al ( O H) 3 = Al 2 (S O4) 3 + 6 H2O )
Acido Sulfúrico Hidróxido de Aluminio Sulfato de Aluminio Agua
HIDRACIDOS + BASES = SAL + AGUA
m H+1n N – n + n M+m ( O H )– m = M+mn N – nm + mn H 2 O
Ejemplo:
H+12 S–2 + 2 Al+3 ( O H ) -3 = Al +32 S– 23 + 6 H 2 0
( H2 S + 2 Al (OH )-3 = Al2 S3 + 6 H 2 0 )
Acido Sulfhídrico Hidróxido de Aluminio Sulfuro deAluminio Agua
LOS HIDRUROS ( IONES METALICOS CON IONES HIDRUROS)
M0 + m /2 H02 = M+m H -m
Ejemplo:
Mg0 + H02 = Mg+2 H–2 ( Mg H2 )
lunes, 21 de septiembre de 2009
unidad nº 3
LA ENVOLTURA DE LOS ATOMOS
La determinación de la disposición de los electrones alrededor del nucleo atómico ha sido un inmenso logro de científicos de las Matemáticas, la Física y la Química. Los resultados de las investigaciones muestran aspectos sorprendentes de la naturaleza de la materia y la energía. Estos aspectos, en relación al atomo, permiten fundamentalmente la comprensión del comportamiento químico de las sustancias.
LAS ONDAS ELECTROMAGNETICAS Y LA ENERGÍA
Las ondas electromagnéticas son campos eléctricos (E) y magnéticos (H) variables, oscilantes y mutuamente perpendiculares que se desplazan por el espacio y se relacionan íntimamente con el concepto de energía
MAGNITUDES Y CUALIDADES DE LAS ONDAS
A = Amplitud de la onda (La mayor oscilación respecto de la posición de equilibrio)
c = velocidad de propagación de la onda ( cm/ seg)
l = longitud de onda ( lambda) desplazamiento del frente de onda en un ciclo (cm)
T = Período ( tiempo de un ciclo ) (seg)
n = frecuencia ( nu ) = 1/T seg –1 = ciclos/seg = Hertz
Ecuación fundamental l = c T
_
:. l = c / n :. n = c / l :. n = 1 / l (N° de ondas ) cm -1
Un fenómeno inherente a la naturaleza de las ondas es la interferencia. Es decir, si las ondas se encuentran en fase se suman sus amplitudes, en cambio si las ondas están desfasadas se anulan mutuamente y la amplitud de la onda resultante puede ser nula.
El fenómeno de la difracción de las ondas es una clara manifestación de la propiedad de interferencia de las ondas. Los ribetes de claridad y oscuridad que acompañan la sombra de los bordes de la hoja de afeitar son consecuencia del fenómeno de la difracción y prueban la naturaleza ondulatoria de la luz.
Difracción de la luz
EL ESPECTRO CONTINUO DE ONDAS ELECTROMAGNÉTICAS
Al incidirlas ondas electromagnéticas sobre un prisma es posible separar las componentes según sus distintas frecuencias.
según la FISICA CLASICA
LA ENERGÍA ERA DE NATURALEZA CONTINUA
Y LA ENERGÍA DE UNA ONDA ELECTROMAGNÉTICA
ERA PROPORCIONAL A LA AMPLITUD DE LA ONDA.
Algunos experimentos cruciales
a) El espectro discontinuo de emisión del Hidrógeno
_
n cm-1
Según Ridberg la frecuencia de las señales está dada por la relación:
_
n = R H ( 1 / n2 - 1 / m2 ) RH = 109.677 cm –1
n y m enteros
b) El efecto fotoeléctrico.
FÍSICA MODERNA
LA ENERGÍA ES DE CARACTER DISCONTÍNUO
SE PRESENTA A LA FORMA DE PEQUEÑOS
"PAQUETES DE ENERGÍA "
QUE SE DENOMINAN CUANTOS, CUANTAS O FOTONES
LA ENERGÍA DE UNA ONDA ELECTROMAGNÉTICA ES PROPORCIONAL A SU FRECUENCIA
ECUACIÓN DE MAX PLANCK
ENERGÍA DE UN FOTÓN = h n
h = Constante de Planck = 6,62 10 -27 erg. seg
EL ATOMO DE HIDROGENO DE BOHR
(Principios Básicos de Química H.Gray)
1) Orbitas circulares
2) Momento angular = m e v r = n h / 2 p n = 1,2,3...........a
Ciertos valores de r Ciertos valores de E
u órbitas permitidas o niveles de energía permitidos
Energía asociada a los cambios de órbita
La formula anterior dá la frecuencia de los fotónes emitidos ( expresadas en Número de Ondas) para las transiciones de electrónicas de pérdida de energía en el átomo de Hidrógeno. Esta fórmula deducida a partir de consideraciones de discontinuidad de la energía ( Física Moderna) está en excelente acuerdo con la ecuación de Ridberg para el espectro discontinuo de emisión del átomo de Hidrógeno. Esta coincidencia en las expresiones fué un éxito para los postulados acerca de la energía de la Física Moderna y para el modelo atómico de Bohr. Sin embargo nuevos experimentos mostraron aspectos insatifactorios y la necesidad de otros modelos y explicaciones.
LA MECANICA CUANTICA ONDULATORIA
Efecto Compton
DUALISMO ONDA- PARTÍCULA
FOTÓN = ONDA EFECTO
COMPTON
==>
PARTÍCULA
ELECTRÓN = PARTÍCULA DIFRACCIÓN
DE
ELECTRONES
(1927)
==>
ONDA
DE BROGLIE " Todo cuerpo en movimiento tiene una onda asociada"
λ = h / m x v = h / p
Electrón, partícula – onda estacionaria .
PRINCIPIO DE INCERTIDUMBRE DE HEISSENBERG
Es imposible conocer simultáneamente la posición x y el momento p de un electrón
D x D p = l . h / l = h > 0
ECUACION ONDA PARTÍCULA DE SCHRODINGER
Ecuación diferencial de 2° orden para sistemas onda partícula, en tres dimensiones e independiente del tiempo donde:
h = constante de Planck,
y = Amplitud de la onda,
m = masa dela partícula
x,y,z = coordenadas de posición,
V(x,y,z ) = Energía Potencial,
E = Energía de la partícula
Resolver la ecuación es, lograr por integración, expresiones para:
y = f (x,y,z) ; E = g (x,y,z)
y 2 a Probabilidad de encontrar la partícula en x,y,z
El encontrar, mediante el cálculo, las zonas de alta probabilidad de encontrar la partícula equivale a determinar los orbitales.
ORBITAL
ZONA DE ALTA PROBABILIDAD DE ENCONTRAR UNA PARTÍCULA
La Ecuación de Schorodinger se aplica al átomo de Hidrógeno y se resuelve obteniendo expresiones para y y E del tipo trigonométricas. En estas expresiones aparecen los denominados números cuánticos n, l, y m cuyas combinaciones se asocian a zonas de alta probabilidad de encontrar el electrón u orbitales.
LOS NUMEROS CUANTICOS, SU SIGNIFICADO,
SUS VALORES Y REGLAS DE COMBINACIÓN
n = Número cuántico principal.
Se asocia al tamaño y energia de los orbitales
¿Cuántos valores? infinito
¿Cuáles? 1,2 3,4,..............a ( Es el mismo n del átomo de Bohr)
l = Número cuántico secundario
Se asocia al tipo o forma de los orbitales
¿Cuántos valores? n
¿Cuáles? 0, 1, 2, 3, .........(n-1)
s p d f
Cada uno de los cuatro primeros valores se asocian respectivamente a las letras que se indican.
m = Numero cuántico magnético.
Se asocia con la orientación espacial de los orbitales
¿Cuántos valores? 2l +1
¿Cuáles? - l, - ( l-1 ), .... -1, 0, 1, ......+ ( l-1 ), + l
s = Numero cuántico de spín electrónico.
Se asocia al giro del electrón sobre su eje
¿Cuántos valores? 2
¿Cuáles? - 1 / 2 , + 1 / 2
COMBINACIONES DE NUMEROS CUANTICOS Y LOS ORBITALES
n l m nl Número de Orbitales
1 0 0 1s 1
2 0 0 2s 1
1 - 1 2px 3
0 2py
1 2pz
3 0 0 3 1
1 -1 3px 3
0 3py
1 3pz
2 - 2 3d 5
-1 3d
0 3d
1 3d
2 3d
4 0 0 4s 1
1 -1 4px 3
0 4py
1 4pz
2 - 2 4d 5
- 1 4d
0 4d
1 4d
2 4d
3 - 3 4f 7
- 2 4f
- 1 4f
0 4f
1 4f
2 4f
3 4f
Se le sugiere construir el cuadro de combinaciones para n = 5
GRÁFICOS DE ORBITALES
Los orbitales px , py y pz
Los 5 orbitales d
Los 7 orbitales f
ATOMOS POLIELECTRÓNICOS
Ante la imposibilidad de resolver la ecuación de Schorodinger para sistemas de varios electrones, se ha supuesto y con éxito, que sucesivos electrones adoptarán los diversos modos de vibración que se encontraron para el electrón de átomo de Hidrógeno.
En palabras más simples, los sucesivos electrones se ubicaran en los orbitales ya determinados para el átomo de Hidrógeno y de acuerdo a las siguientes reglas.
Principio de exclusión de Pauli
No puede haber 2 electrones con los 4 números cuánticos iguales. Es equivalente a establecer que un orbital acepta un máximo de 2 electrones.
Principio de Estabilidad o menor Energía
Regla de Ta o de las diagonales.
Los electrones se ubican primero en los orbitales de menor energía.
Son de menor energía los de menor valor de n + l.
A igualdad de n + l se considera de menor energía los de menor n.
Diagonales indican el orden de llenado ( energía creciente)
Principio de Hund
En el caso de varios orbitales de igual energía o "degenerados" ( igual n + l , igual n ), por ejemplo una serie de 3 orbitales p, o una serie de 5 orbitales d, o bién una de7 orbitales f. Los electrones entran de a uno en cada uno de ellos, haciéndolo primero, por convención, con spin negativo. Cuando todos los orbitales " degenerados" ya hayan recibido un electrón con spin negativo pueden formarse parejas de spines opuestos.
PROPIEDADES MAGNETICAS DE LAS SUSTANCIAS
Parece conveniente indicar en este momento que el principio de Hund promueve la situación que existan orbitales con un sólo electrón o electrón desapareado. Esta circunstancia tiene una importante consecuencia en las propiedades magnéticas de los elementos. Aquellas sustancias que poseen orbitales con electrones desapareados ( spin - 1/2) tienen propiedades paramagnéticas, esto es, los campos magnéticos de spín se suman, refuerzan o atraen los campos magnéticos externos, las sustancia son imantables.
De no suceder así, es decir, si todos los orbitales tienen electrones apareados ( spin + 1/2 y - 1/2 ) es una circunstancia que determina el diamagnetismo, la sustancia repele campos magnéticos externos y las sustancias no son imantables.
GRAFICO RESUMEN
Diagrama para llenado electrónico, orbitales disponibles y en orden de energía creciente
CONFIGURACIONES ELECTRÓNICAS Y ELECTRONES DE VALENCIA
Los electrones de valencia son aquellos que se encuentran en los orbitales de mayor número cuántico principal más aquellos que están en orbitales con el número cuántico principal anterior al mayor a condición de estar incompletos.
SISTEMA PERIODICO DE LOS ELEMENTOS
Ubicación de los Números Atómicos por Configuraciones Electrónicas
¿ Cuál es la configuración electrónica detallada del elemento cuyo Z = 77 ?
1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d2 5d2 5d1 5d1 5d1
¿Cuales son electrones de valencia?
1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d2 5d2 5d1 5d1 5d1
¿Cuales son los números cuánticos del último electrón ?
1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d!¡ 5d!¡ 5d! 5d! 5d!
n= 5 l =2 m= -1 s = + 1/2
La determinación de la disposición de los electrones alrededor del nucleo atómico ha sido un inmenso logro de científicos de las Matemáticas, la Física y la Química. Los resultados de las investigaciones muestran aspectos sorprendentes de la naturaleza de la materia y la energía. Estos aspectos, en relación al atomo, permiten fundamentalmente la comprensión del comportamiento químico de las sustancias.
LAS ONDAS ELECTROMAGNETICAS Y LA ENERGÍA
Las ondas electromagnéticas son campos eléctricos (E) y magnéticos (H) variables, oscilantes y mutuamente perpendiculares que se desplazan por el espacio y se relacionan íntimamente con el concepto de energía
MAGNITUDES Y CUALIDADES DE LAS ONDAS
A = Amplitud de la onda (La mayor oscilación respecto de la posición de equilibrio)
c = velocidad de propagación de la onda ( cm/ seg)
l = longitud de onda ( lambda) desplazamiento del frente de onda en un ciclo (cm)
T = Período ( tiempo de un ciclo ) (seg)
n = frecuencia ( nu ) = 1/T seg –1 = ciclos/seg = Hertz
Ecuación fundamental l = c T
_
:. l = c / n :. n = c / l :. n = 1 / l (N° de ondas ) cm -1
Un fenómeno inherente a la naturaleza de las ondas es la interferencia. Es decir, si las ondas se encuentran en fase se suman sus amplitudes, en cambio si las ondas están desfasadas se anulan mutuamente y la amplitud de la onda resultante puede ser nula.
El fenómeno de la difracción de las ondas es una clara manifestación de la propiedad de interferencia de las ondas. Los ribetes de claridad y oscuridad que acompañan la sombra de los bordes de la hoja de afeitar son consecuencia del fenómeno de la difracción y prueban la naturaleza ondulatoria de la luz.
Difracción de la luz
EL ESPECTRO CONTINUO DE ONDAS ELECTROMAGNÉTICAS
Al incidirlas ondas electromagnéticas sobre un prisma es posible separar las componentes según sus distintas frecuencias.
según la FISICA CLASICA
LA ENERGÍA ERA DE NATURALEZA CONTINUA
Y LA ENERGÍA DE UNA ONDA ELECTROMAGNÉTICA
ERA PROPORCIONAL A LA AMPLITUD DE LA ONDA.
Algunos experimentos cruciales
a) El espectro discontinuo de emisión del Hidrógeno
_
n cm-1
Según Ridberg la frecuencia de las señales está dada por la relación:
_
n = R H ( 1 / n2 - 1 / m2 ) RH = 109.677 cm –1
n y m enteros
b) El efecto fotoeléctrico.
FÍSICA MODERNA
LA ENERGÍA ES DE CARACTER DISCONTÍNUO
SE PRESENTA A LA FORMA DE PEQUEÑOS
"PAQUETES DE ENERGÍA "
QUE SE DENOMINAN CUANTOS, CUANTAS O FOTONES
LA ENERGÍA DE UNA ONDA ELECTROMAGNÉTICA ES PROPORCIONAL A SU FRECUENCIA
ECUACIÓN DE MAX PLANCK
ENERGÍA DE UN FOTÓN = h n
h = Constante de Planck = 6,62 10 -27 erg. seg
EL ATOMO DE HIDROGENO DE BOHR
(Principios Básicos de Química H.Gray)
1) Orbitas circulares
2) Momento angular = m e v r = n h / 2 p n = 1,2,3...........a
Ciertos valores de r Ciertos valores de E
u órbitas permitidas o niveles de energía permitidos
Energía asociada a los cambios de órbita
La formula anterior dá la frecuencia de los fotónes emitidos ( expresadas en Número de Ondas) para las transiciones de electrónicas de pérdida de energía en el átomo de Hidrógeno. Esta fórmula deducida a partir de consideraciones de discontinuidad de la energía ( Física Moderna) está en excelente acuerdo con la ecuación de Ridberg para el espectro discontinuo de emisión del átomo de Hidrógeno. Esta coincidencia en las expresiones fué un éxito para los postulados acerca de la energía de la Física Moderna y para el modelo atómico de Bohr. Sin embargo nuevos experimentos mostraron aspectos insatifactorios y la necesidad de otros modelos y explicaciones.
LA MECANICA CUANTICA ONDULATORIA
Efecto Compton
DUALISMO ONDA- PARTÍCULA
FOTÓN = ONDA EFECTO
COMPTON
==>
PARTÍCULA
ELECTRÓN = PARTÍCULA DIFRACCIÓN
DE
ELECTRONES
(1927)
==>
ONDA
DE BROGLIE " Todo cuerpo en movimiento tiene una onda asociada"
λ = h / m x v = h / p
Electrón, partícula – onda estacionaria .
PRINCIPIO DE INCERTIDUMBRE DE HEISSENBERG
Es imposible conocer simultáneamente la posición x y el momento p de un electrón
D x D p = l . h / l = h > 0
ECUACION ONDA PARTÍCULA DE SCHRODINGER
Ecuación diferencial de 2° orden para sistemas onda partícula, en tres dimensiones e independiente del tiempo donde:
h = constante de Planck,
y = Amplitud de la onda,
m = masa dela partícula
x,y,z = coordenadas de posición,
V(x,y,z ) = Energía Potencial,
E = Energía de la partícula
Resolver la ecuación es, lograr por integración, expresiones para:
y = f (x,y,z) ; E = g (x,y,z)
y 2 a Probabilidad de encontrar la partícula en x,y,z
El encontrar, mediante el cálculo, las zonas de alta probabilidad de encontrar la partícula equivale a determinar los orbitales.
ORBITAL
ZONA DE ALTA PROBABILIDAD DE ENCONTRAR UNA PARTÍCULA
La Ecuación de Schorodinger se aplica al átomo de Hidrógeno y se resuelve obteniendo expresiones para y y E del tipo trigonométricas. En estas expresiones aparecen los denominados números cuánticos n, l, y m cuyas combinaciones se asocian a zonas de alta probabilidad de encontrar el electrón u orbitales.
LOS NUMEROS CUANTICOS, SU SIGNIFICADO,
SUS VALORES Y REGLAS DE COMBINACIÓN
n = Número cuántico principal.
Se asocia al tamaño y energia de los orbitales
¿Cuántos valores? infinito
¿Cuáles? 1,2 3,4,..............a ( Es el mismo n del átomo de Bohr)
l = Número cuántico secundario
Se asocia al tipo o forma de los orbitales
¿Cuántos valores? n
¿Cuáles? 0, 1, 2, 3, .........(n-1)
s p d f
Cada uno de los cuatro primeros valores se asocian respectivamente a las letras que se indican.
m = Numero cuántico magnético.
Se asocia con la orientación espacial de los orbitales
¿Cuántos valores? 2l +1
¿Cuáles? - l, - ( l-1 ), .... -1, 0, 1, ......+ ( l-1 ), + l
s = Numero cuántico de spín electrónico.
Se asocia al giro del electrón sobre su eje
¿Cuántos valores? 2
¿Cuáles? - 1 / 2 , + 1 / 2
COMBINACIONES DE NUMEROS CUANTICOS Y LOS ORBITALES
n l m nl Número de Orbitales
1 0 0 1s 1
2 0 0 2s 1
1 - 1 2px 3
0 2py
1 2pz
3 0 0 3 1
1 -1 3px 3
0 3py
1 3pz
2 - 2 3d 5
-1 3d
0 3d
1 3d
2 3d
4 0 0 4s 1
1 -1 4px 3
0 4py
1 4pz
2 - 2 4d 5
- 1 4d
0 4d
1 4d
2 4d
3 - 3 4f 7
- 2 4f
- 1 4f
0 4f
1 4f
2 4f
3 4f
Se le sugiere construir el cuadro de combinaciones para n = 5
GRÁFICOS DE ORBITALES
Los orbitales px , py y pz
Los 5 orbitales d
Los 7 orbitales f
ATOMOS POLIELECTRÓNICOS
Ante la imposibilidad de resolver la ecuación de Schorodinger para sistemas de varios electrones, se ha supuesto y con éxito, que sucesivos electrones adoptarán los diversos modos de vibración que se encontraron para el electrón de átomo de Hidrógeno.
En palabras más simples, los sucesivos electrones se ubicaran en los orbitales ya determinados para el átomo de Hidrógeno y de acuerdo a las siguientes reglas.
Principio de exclusión de Pauli
No puede haber 2 electrones con los 4 números cuánticos iguales. Es equivalente a establecer que un orbital acepta un máximo de 2 electrones.
Principio de Estabilidad o menor Energía
Regla de Ta o de las diagonales.
Los electrones se ubican primero en los orbitales de menor energía.
Son de menor energía los de menor valor de n + l.
A igualdad de n + l se considera de menor energía los de menor n.
Diagonales indican el orden de llenado ( energía creciente)
Principio de Hund
En el caso de varios orbitales de igual energía o "degenerados" ( igual n + l , igual n ), por ejemplo una serie de 3 orbitales p, o una serie de 5 orbitales d, o bién una de7 orbitales f. Los electrones entran de a uno en cada uno de ellos, haciéndolo primero, por convención, con spin negativo. Cuando todos los orbitales " degenerados" ya hayan recibido un electrón con spin negativo pueden formarse parejas de spines opuestos.
PROPIEDADES MAGNETICAS DE LAS SUSTANCIAS
Parece conveniente indicar en este momento que el principio de Hund promueve la situación que existan orbitales con un sólo electrón o electrón desapareado. Esta circunstancia tiene una importante consecuencia en las propiedades magnéticas de los elementos. Aquellas sustancias que poseen orbitales con electrones desapareados ( spin - 1/2) tienen propiedades paramagnéticas, esto es, los campos magnéticos de spín se suman, refuerzan o atraen los campos magnéticos externos, las sustancia son imantables.
De no suceder así, es decir, si todos los orbitales tienen electrones apareados ( spin + 1/2 y - 1/2 ) es una circunstancia que determina el diamagnetismo, la sustancia repele campos magnéticos externos y las sustancias no son imantables.
GRAFICO RESUMEN
Diagrama para llenado electrónico, orbitales disponibles y en orden de energía creciente
CONFIGURACIONES ELECTRÓNICAS Y ELECTRONES DE VALENCIA
Los electrones de valencia son aquellos que se encuentran en los orbitales de mayor número cuántico principal más aquellos que están en orbitales con el número cuántico principal anterior al mayor a condición de estar incompletos.
SISTEMA PERIODICO DE LOS ELEMENTOS
Ubicación de los Números Atómicos por Configuraciones Electrónicas
¿ Cuál es la configuración electrónica detallada del elemento cuyo Z = 77 ?
1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d2 5d2 5d1 5d1 5d1
¿Cuales son electrones de valencia?
1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d2 5d2 5d1 5d1 5d1
¿Cuales son los números cuánticos del último electrón ?
1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d!¡ 5d!¡ 5d! 5d! 5d!
n= 5 l =2 m= -1 s = + 1/2
viernes, 21 de agosto de 2009
Unidad Nº1 "La Quimica "
La Química es parte de la Ciencia que estudia la obtención, las propiedades y la transformación de las Sustancias Puras y los sistemas que ellas forman.
La Ciencia es el conocimiento obtenido a través del llamado método científico.
El método científico es un modo natural, ordenado, racional y sistemático de obtener el conocimiento. Este modo comienza con la observación de un fenómeno, continúa con la formulación de hipótesis que intentan explicar lo observado, prosigue con los experimentos que permiten confirmar y descartar las hipótesis. Como resultado de las actividades descritas se obtienen conocimientos particulares que se expresan mediante las leyes científicas . Una visión más general de un tema sostenida por varias leyes se denomina teoría.
Modelo Estructural Molecular de las Sustancias Puras
1 .- Un cierto tipo de partículas, llamadas moléculas, invisibles y que poseen cualidades que veremos a continuación, nos permiten comprender el concepto de Sustancia Pura.
2.- Una Sustancia Pura es un conjunto de moléculas idénticas, de igual tamaño, masa, y forma.
Ejemplos:
Podemos así también inferir una definición de molécula: La menor porción material en que se puede presentar una Sustancia Pura.
FILTRACIÓN SIMPLE
FILTRACION CON SUCCIÓN O DE VACÍO
DECANTACION
CENTRIFUGACIÓN
SUBLIMACIÓN
DISOLUCIÓN
TAMIZACIÓN
Sistemas homogeneos.-
TECNICAS DE SEPARACIÓN DE SUSTANCIAS PURAS DESDE SISTEMAS HOMOGENEOS
DESTILACIÓN
EXTRACCIÓN POR SOLVENTE
El soluto es extraído del solvente original por un solvente extractor, inmiscuible con el primero, y que disuelve mejor al soluto
CRISTALIZACIÓN
CONCEPTO PREVIO DE SOLUBILIDAD
La Solubilidad es la mayor cantidad de soluto, que en forma estable, se puede disolver en una determinada cantidad de solvente a una temperatura y presión dadas. Cuando la solución tiene disuelto la cantidad de soluto que corresponde a la solubilidad se dice que la solución está saturada
La Solubilidad de los sólidos en líquidos por lo general aumenta cuando aumenta la Temperatura.
En la cristalización se lleva a la solución a la condición de saturación a una temperatura alta, luego se deja enfriar lentamente y como la solubilidad es menor a menores temperaturas se forman cristales.
Los cristales se forman a partir de pequeños "nucleos de cristalización" ( formados por siembra de pequeños cristales, aristas de vidrio de los vasos o bien espontáneamente). Mientras menor cantidad de nucleos de cristalización se formen, mejores y mayores cristales se obtienen. Mientras más grande sea el cristal formado , la sustancia es más pura o menos contaminada con impurezas.
CROMATOGRAFÍA
Las diferentes Sustancias Puras de una mezcla se pueden separar por Cromatografía. Una muestra ( mezcla de moléculas coloreadas azul y rojo en el siguiente gráfico) se siembra en un soporte fijo o estacionario. El flujo de una fase movil arrastra de diferente manera ( separa ) los distintos tipos de moléculas.
Las moléculas son retenidas por la fase estacionaria mediante fuerzas de retención y al mismo tiempo son arrastradas por la fase movil mediante fuerzas de arrastre. La intensidad de estas fuerzas ( de naturaleza eléctrica ) son propias de cada sustancia. Si una sustancia es pobremente retenida pero fuertemente arrastrada tendrá un bajo tiempo de elución en cambio otra que es fuertemente retenida y pobremente arrastrada demorará mucho en cruzar la fase estacionaria y tendrá un tiempo de elución elevado.
El tiempo de elución para una determinada sustancia es constante para una fase estacionaria, fase movil, flujo y largo de columna determinados y es por lo tanto un factor de identificación de las sustancias.
Cromatografía líquida de capa fina.
Fué la primera en desarrollarse, las diferentes sustancias separadas eran reconocidas mediante reactivos que daban coloraciones particulares. De allí el nombre del método ( Chromos = Color ). Tiene utilidad de reconocimiento de diferentes Sustancias
Cromatografía líquida en columna
Usada con fines preparativos ( separar cantidades significativas de diferentes sustancias). La fase movil (líquido) desciende por gravedad. Es común detectar el descenso de las sustancias alumbrando el sistema con luz UV (ultravioleta)
Registro de Cromatografía de Gases
La fase estacionaria rellena un serpentín. Se hace fluir un gas como fase móvil en forma constante a presión constante. Se mide el tiempo de elución de la fase móvil y con el se comparan los tiempos de elución de las diferentes sustancias. Las sustancias son detectadas por métodos acoplados a sistemas electrónicos. Estos identifican y cuantifican los componentes del sistema mediante los correspondientes registros.
EL CAMBIO QUÍMICO Y LAS LEYES FUNDAMENTALES
Sabemos que una Sustancia Pura es un sistema formado por un tipo de moléculas características para esa Sustancia, es decir de tamaño, masa y forma bien definidas. Cuándo las Sustancias Puras reciben energía mayor que la necesaria para que acontezcan los cambios físicos sus moléculas se modifican, variando el tamaño, la masa y la forma, es decir se transforman en moléculas o Sustancia Puras distintas de las iniciales. En estos casos ha ocurrido un Cambio Químico o Reacción Química.
Cambio Químico
Sustancia (s) Pura (s) Inicial (es) ------> Sustancia (s) Pura (s) Final (es)
Molécula (s) Inicial (es) ------> Molécula (s) Final (es)
Reaccionante (s) ------> Producto (s)
Ley de la Conservación de la Materia (Lavoisier)
En un cambio químico la masa de los reaccionantes es igual a la masa de los productos.
Ley de las Proporciones Definidas ( Proust)
La proporción en que los elementos se combinan para formar compuestos es definida o constante no importando la procedencia del compuesto.
Ejemplo El sulfuro de plomo es un compuesto (negro) formado por los elementos plomo ( plomo) en 86,4% y azufre ( amarillo) en 13,6 %. Esto significa que por cada 100 g. de sulfuro de plomo 86,4 g. corresponden a plomo y 13,6 g. a azufre.
Así, si colocamos en un crisol para hacer reaccionar y calentamos:
0,864 g de plomo y 0,136 g de azufre se formará 1 g. de sulfuro de plomo.
Ley de las proporciones Múltiples (Dalton)
Los pesos de un elemento que se combinan con una cantidad fija de un segundo elemento cuando se forman dos o más compuestos están en relación de números enteros.
Ejemplo: Peso de hidrógeno combinado con 1 g de nitrógeno en amoníaco 3
________________________________________________ = _______
Peso de hidrógeno combinado con 1 g de nitrógeno en hidrazina 2
La ley y su implicancia a nivel molecular
Esta vez el concepto " porción definida de un elemento" se refuerza fuertemente y conduce al concepto definido de atomo.
MODELO ATÓMICO
Las leyes fundamentales recién estudiadas demuestran que las moléculas a su vez están formadas por otras partículas aún más pequeñas. Estas nuevas partículas se denominan átomos y deben poseer las siguientes cualidades:
1.- Los átomos son partículas, que mediante fuerzas denominadas enlace químico, se unen para formar las moléculas.
2.- Cada elemento tiene un átomo característico, es decir , de tamaño y masa determinados. Existen tantos tipos de átomos como de elementos. ( Los Elementos son aquellas Sustancias que mediante Símbolos se presentan en el Sistema Periódico)
3.- Si los átomos se presentan solitarios, o bien unidos del mismo tipo, se trata de moléculas de un Elemento.
Si los átomos se presentan unidos, de distinto tipo, se trata de molécula de un Compuesto.
4.- Un Cambio Químico es un reordenamiento de átomos.
NOMENCLATURA QUIMICA Y EJEMPLOS
Un átomo de un Elemento se representa por su Símbolo
Un átomo de cobre se representa por su Cu
Un átomo de oxígeno se representa por O
Un átomo de hidrógeno se representa por H
Una molécula de una Sustancia Pura se representa por su Fórmula
Una molécula de Oxido de Cobre (I) se representa por Cu2O
El número de átomos del elemento se indica con un subíndice después del Símbolo y se llama Atomicidad.
Un reordenamiento de atomos de un cambio Químico se representa por su Ecuación
Un reordenamiento de atomos de la formación del hidróxido de cobre (I) se representa por
Cu2O + H2O = 2 Cu OH
El número de partículas idénticas se indica delante de la fórmula con el Coeficiente Estequiométrico
Algunas características de agrupación de los átomos al formar moléculas se indican usando paréntesis.
CuO2H2 Cu(OH)2
LEY DE VOLUMENES DE COMBINACIÓN DE GASES ( Gay Lussac)
Los volumenes de gases de Reaccionantes y Productos, medidos en iguales condiciones de Presión y Temperatura, están en relación de números enteros.
¿Porqué esa relación de volumenes? ¿Cuál es la fórmula de las moléculas de esas sustancias?
HIPOTESIS O PRINCIPIO DE AVOGADRO
Amadeus Avogadro En volumenes iguales, de cualquier gas, medidos en iguales
condiciones de P y T existe igual número de moléculas.
La Presión que ejercen las moléculas al chocar con las paredes del recipiente depende:
1) de la magnitud de los Impactos = masa x velocidad
(relacionable con la Energía Cinética = 1/2 masa x velocidad 2 y proporcional a la temperatura)
2) del número de Impactos ( proporcional al número de moléculas)
Avogadro razona:
Si las temperaturas son iguales, las magnitudes de los impactos son iguales (m v = m’v’, la molécula liviana se mueve rápido y la pesada se mueve lento) y si las presiones son iguales, el número de Impactos ( número de moléculas) son iguales.
Aplicando el Principio de Avogadro recién enunciado a lo observado por Gay Lussac según los ejemplos ya entregados se concluye que los volumenes de reaccionantes y productos observados se explican mediante las siguientes proposiciones de reordenamientos:
2 H 2 + O 2 = 2 H 2 O
N 2 + 3 H 2 = 2 NH 3
H 2 + Cl 2 = 2 H Cl
La Hipótesis de Avogadro no sólo explica los experimentos de Gay Lussac y permite conocer la fórmula de las moléculas de gases simples, sino que permite, pesando volumenes iguales de diferentes gases medidos en iguales condiciones de P y T donde hay igual número de átomos, establecer la primera relación de masas de los diferentes átomos.
Primeras escalas de Pesos Atómicos o Pesos relativos.
Estos pesos permitieron las relaciones de la Ley de las Proporciones Recíprocas, que junto a otras reglas, permitieron conocer la masa relativa de otros átomos como los de elementos metálicos.
Avogadro, cuando presentó su hipótesis en 1811, era un joven desconocido y su aporte no fue reconocido sino hasta el 1858 cuando la fuerza de lo verdadero se impuso. Medio siglo de masiva dependencia intelectual y carencia de espíritu crítico, situación incomprensible e inaceptable entre quienes se supone hacen la Ciencia.
La Química es parte de la Ciencia que estudia la obtención, las propiedades y la transformación de las Sustancias Puras y los sistemas que ellas forman.
La Ciencia es el conocimiento obtenido a través del llamado método científico.
El método científico es un modo natural, ordenado, racional y sistemático de obtener el conocimiento. Este modo comienza con la observación de un fenómeno, continúa con la formulación de hipótesis que intentan explicar lo observado, prosigue con los experimentos que permiten confirmar y descartar las hipótesis. Como resultado de las actividades descritas se obtienen conocimientos particulares que se expresan mediante las leyes científicas . Una visión más general de un tema sostenida por varias leyes se denomina teoría.
Modelo Estructural Molecular de las Sustancias Puras
1 .- Un cierto tipo de partículas, llamadas moléculas, invisibles y que poseen cualidades que veremos a continuación, nos permiten comprender el concepto de Sustancia Pura.
2.- Una Sustancia Pura es un conjunto de moléculas idénticas, de igual tamaño, masa, y forma.
Ejemplos:
Podemos así también inferir una definición de molécula: La menor porción material en que se puede presentar una Sustancia Pura.
FILTRACIÓN SIMPLE
FILTRACION CON SUCCIÓN O DE VACÍO
DECANTACION
CENTRIFUGACIÓN
SUBLIMACIÓN
DISOLUCIÓN
TAMIZACIÓN
Sistemas homogeneos.-
TECNICAS DE SEPARACIÓN DE SUSTANCIAS PURAS DESDE SISTEMAS HOMOGENEOS
DESTILACIÓN
EXTRACCIÓN POR SOLVENTE
El soluto es extraído del solvente original por un solvente extractor, inmiscuible con el primero, y que disuelve mejor al soluto
CRISTALIZACIÓN
CONCEPTO PREVIO DE SOLUBILIDAD
La Solubilidad es la mayor cantidad de soluto, que en forma estable, se puede disolver en una determinada cantidad de solvente a una temperatura y presión dadas. Cuando la solución tiene disuelto la cantidad de soluto que corresponde a la solubilidad se dice que la solución está saturada
La Solubilidad de los sólidos en líquidos por lo general aumenta cuando aumenta la Temperatura.
En la cristalización se lleva a la solución a la condición de saturación a una temperatura alta, luego se deja enfriar lentamente y como la solubilidad es menor a menores temperaturas se forman cristales.
Los cristales se forman a partir de pequeños "nucleos de cristalización" ( formados por siembra de pequeños cristales, aristas de vidrio de los vasos o bien espontáneamente). Mientras menor cantidad de nucleos de cristalización se formen, mejores y mayores cristales se obtienen. Mientras más grande sea el cristal formado , la sustancia es más pura o menos contaminada con impurezas.
CROMATOGRAFÍA
Las diferentes Sustancias Puras de una mezcla se pueden separar por Cromatografía. Una muestra ( mezcla de moléculas coloreadas azul y rojo en el siguiente gráfico) se siembra en un soporte fijo o estacionario. El flujo de una fase movil arrastra de diferente manera ( separa ) los distintos tipos de moléculas.
Las moléculas son retenidas por la fase estacionaria mediante fuerzas de retención y al mismo tiempo son arrastradas por la fase movil mediante fuerzas de arrastre. La intensidad de estas fuerzas ( de naturaleza eléctrica ) son propias de cada sustancia. Si una sustancia es pobremente retenida pero fuertemente arrastrada tendrá un bajo tiempo de elución en cambio otra que es fuertemente retenida y pobremente arrastrada demorará mucho en cruzar la fase estacionaria y tendrá un tiempo de elución elevado.
El tiempo de elución para una determinada sustancia es constante para una fase estacionaria, fase movil, flujo y largo de columna determinados y es por lo tanto un factor de identificación de las sustancias.
Cromatografía líquida de capa fina.
Fué la primera en desarrollarse, las diferentes sustancias separadas eran reconocidas mediante reactivos que daban coloraciones particulares. De allí el nombre del método ( Chromos = Color ). Tiene utilidad de reconocimiento de diferentes Sustancias
Cromatografía líquida en columna
Usada con fines preparativos ( separar cantidades significativas de diferentes sustancias). La fase movil (líquido) desciende por gravedad. Es común detectar el descenso de las sustancias alumbrando el sistema con luz UV (ultravioleta)
Registro de Cromatografía de Gases
La fase estacionaria rellena un serpentín. Se hace fluir un gas como fase móvil en forma constante a presión constante. Se mide el tiempo de elución de la fase móvil y con el se comparan los tiempos de elución de las diferentes sustancias. Las sustancias son detectadas por métodos acoplados a sistemas electrónicos. Estos identifican y cuantifican los componentes del sistema mediante los correspondientes registros.
EL CAMBIO QUÍMICO Y LAS LEYES FUNDAMENTALES
Sabemos que una Sustancia Pura es un sistema formado por un tipo de moléculas características para esa Sustancia, es decir de tamaño, masa y forma bien definidas. Cuándo las Sustancias Puras reciben energía mayor que la necesaria para que acontezcan los cambios físicos sus moléculas se modifican, variando el tamaño, la masa y la forma, es decir se transforman en moléculas o Sustancia Puras distintas de las iniciales. En estos casos ha ocurrido un Cambio Químico o Reacción Química.
Cambio Químico
Sustancia (s) Pura (s) Inicial (es) ------> Sustancia (s) Pura (s) Final (es)
Molécula (s) Inicial (es) ------> Molécula (s) Final (es)
Reaccionante (s) ------> Producto (s)
Ley de la Conservación de la Materia (Lavoisier)
En un cambio químico la masa de los reaccionantes es igual a la masa de los productos.
Ley de las Proporciones Definidas ( Proust)
La proporción en que los elementos se combinan para formar compuestos es definida o constante no importando la procedencia del compuesto.
Ejemplo El sulfuro de plomo es un compuesto (negro) formado por los elementos plomo ( plomo) en 86,4% y azufre ( amarillo) en 13,6 %. Esto significa que por cada 100 g. de sulfuro de plomo 86,4 g. corresponden a plomo y 13,6 g. a azufre.
Así, si colocamos en un crisol para hacer reaccionar y calentamos:
0,864 g de plomo y 0,136 g de azufre se formará 1 g. de sulfuro de plomo.
Ley de las proporciones Múltiples (Dalton)
Los pesos de un elemento que se combinan con una cantidad fija de un segundo elemento cuando se forman dos o más compuestos están en relación de números enteros.
Ejemplo: Peso de hidrógeno combinado con 1 g de nitrógeno en amoníaco 3
________________________________________________ = _______
Peso de hidrógeno combinado con 1 g de nitrógeno en hidrazina 2
La ley y su implicancia a nivel molecular
Esta vez el concepto " porción definida de un elemento" se refuerza fuertemente y conduce al concepto definido de atomo.
MODELO ATÓMICO
Las leyes fundamentales recién estudiadas demuestran que las moléculas a su vez están formadas por otras partículas aún más pequeñas. Estas nuevas partículas se denominan átomos y deben poseer las siguientes cualidades:
1.- Los átomos son partículas, que mediante fuerzas denominadas enlace químico, se unen para formar las moléculas.
2.- Cada elemento tiene un átomo característico, es decir , de tamaño y masa determinados. Existen tantos tipos de átomos como de elementos. ( Los Elementos son aquellas Sustancias que mediante Símbolos se presentan en el Sistema Periódico)
3.- Si los átomos se presentan solitarios, o bien unidos del mismo tipo, se trata de moléculas de un Elemento.
Si los átomos se presentan unidos, de distinto tipo, se trata de molécula de un Compuesto.
4.- Un Cambio Químico es un reordenamiento de átomos.
NOMENCLATURA QUIMICA Y EJEMPLOS
Un átomo de un Elemento se representa por su Símbolo
Un átomo de cobre se representa por su Cu
Un átomo de oxígeno se representa por O
Un átomo de hidrógeno se representa por H
Una molécula de una Sustancia Pura se representa por su Fórmula
Una molécula de Oxido de Cobre (I) se representa por Cu2O
El número de átomos del elemento se indica con un subíndice después del Símbolo y se llama Atomicidad.
Un reordenamiento de atomos de un cambio Químico se representa por su Ecuación
Un reordenamiento de atomos de la formación del hidróxido de cobre (I) se representa por
Cu2O + H2O = 2 Cu OH
El número de partículas idénticas se indica delante de la fórmula con el Coeficiente Estequiométrico
Algunas características de agrupación de los átomos al formar moléculas se indican usando paréntesis.
CuO2H2 Cu(OH)2
LEY DE VOLUMENES DE COMBINACIÓN DE GASES ( Gay Lussac)
Los volumenes de gases de Reaccionantes y Productos, medidos en iguales condiciones de Presión y Temperatura, están en relación de números enteros.
¿Porqué esa relación de volumenes? ¿Cuál es la fórmula de las moléculas de esas sustancias?
HIPOTESIS O PRINCIPIO DE AVOGADRO
Amadeus Avogadro En volumenes iguales, de cualquier gas, medidos en iguales
condiciones de P y T existe igual número de moléculas.
La Presión que ejercen las moléculas al chocar con las paredes del recipiente depende:
1) de la magnitud de los Impactos = masa x velocidad
(relacionable con la Energía Cinética = 1/2 masa x velocidad 2 y proporcional a la temperatura)
2) del número de Impactos ( proporcional al número de moléculas)
Avogadro razona:
Si las temperaturas son iguales, las magnitudes de los impactos son iguales (m v = m’v’, la molécula liviana se mueve rápido y la pesada se mueve lento) y si las presiones son iguales, el número de Impactos ( número de moléculas) son iguales.
Aplicando el Principio de Avogadro recién enunciado a lo observado por Gay Lussac según los ejemplos ya entregados se concluye que los volumenes de reaccionantes y productos observados se explican mediante las siguientes proposiciones de reordenamientos:
2 H 2 + O 2 = 2 H 2 O
N 2 + 3 H 2 = 2 NH 3
H 2 + Cl 2 = 2 H Cl
La Hipótesis de Avogadro no sólo explica los experimentos de Gay Lussac y permite conocer la fórmula de las moléculas de gases simples, sino que permite, pesando volumenes iguales de diferentes gases medidos en iguales condiciones de P y T donde hay igual número de átomos, establecer la primera relación de masas de los diferentes átomos.
Primeras escalas de Pesos Atómicos o Pesos relativos.
Estos pesos permitieron las relaciones de la Ley de las Proporciones Recíprocas, que junto a otras reglas, permitieron conocer la masa relativa de otros átomos como los de elementos metálicos.
Avogadro, cuando presentó su hipótesis en 1811, era un joven desconocido y su aporte no fue reconocido sino hasta el 1858 cuando la fuerza de lo verdadero se impuso. Medio siglo de masiva dependencia intelectual y carencia de espíritu crítico, situación incomprensible e inaceptable entre quienes se supone hacen la Ciencia.
miércoles, 19 de agosto de 2009
ESTUDIO DE LOS ATOMOS
La materia y la Electricidad
Diferentes experimentos demuestran la existencia de dos tipos de electricidad, se les denomina la positiva y la negativa. Si dos cuerpos poseen igual tipo de carga se repelen en tanto que si tienen cargas de distinto signo se atraen.
En sus experimentos de electrólisis, Faraday determinó la proporcionalidad entre la cantidad de sustancias transformadas y la cantidad de electricidad empleada. Surge la noción que la corriente eléctrica es un flujo de partículas que se les llamó electrones.
Thompson demuestra experimentalmente, con el tubo de rayos catódicos la existencia de los electrones.
Tubo de rayos catódicos
Los electrones resultan ser partículas de carga eléctrica negativa cuya razón:
Carga
_________________ = 1,76 . 10 8 (Coulomb / gramo)
Masa
Millikan determina la carga eléctrica del electrón en su clásico experimento de la gota de aceite.
Experimento de la gota de aceite de Millikan
Así la carga del electrón se establece en 1,6 . 10 -19 coulomb y su masa en 9,1. 10 –28 gramos.
LAS PARTICULAS INTRATOMICAS FUNDAMENTALES
Rutherford, bombardea una lámina de oro, con rayos a ( partículas "pesadas", cargadas positivamente)
Experimento de Rutherford
Dispersión de los rayos a por lámina de oro
Rutherford concluye que la lámina de oro es prácticamente vacía, o mejor, el átomo de oro concentra toda su masa en un núcleo de carga positiva de volumen muy pequeño en relación al volumen atómico total.
Comprende la presencia en el núcleo del átomo, de los protones, partículas cargadas positivamente y de masa mayor que la del electrón y que ya habían sido detectadas con el tubo de Thompson. También se comprende la presencia en el nucleo de los neutrones, partículas de igual masa que el protón pero sin carga eléctrica.
El nucleo, por la presencia de los protones, tiene carga positiva y por esta razón atrae los electrones (cargas negativas) que giran a su alrededor en órbitas semejantes, en una primera aproximación a las órbitas planetarias del sistema solar.
LA VISION ATOMICA DE RUTHERFORD
NOMENCLATURA PARA SISTEMAS ATOMICOS Y SUS MODIFICACIONES.
NUMERO MÁSICO CARGA ELÉCTRICA O ESTADO DE OXIDACIÓN A CARGA
SÍMBOLO S
NÚMERO ATÓMICO ATOMICIDAD Z X
DEFINICIONES
NÚMERO ATÓMICO = NÚMERO DE PROTONES = Z
NÚMERO MÁSICO = NÚMERO DE PROTONES + NÚMERO DE NEUTRONES = A
CARGA ELECTRICA = NÚMERO DE PROTONES - NÚMERO DE ELECTRONES
7 0 7 +1
Li = Li + e-
3 3
ión positivo
7 +1 7 -2
Li + 3 e- = Li
3 3
ión negativo
7 0 4 0
Li = He + 2 n 0 + p+ + e-
3 2
Ión : Atomo o grupo de atomohttp://www.blogger.com/post-create.g?blogID=8810408610269926879#s cargados eléctricamente.
La materia y la Electricidad
Diferentes experimentos demuestran la existencia de dos tipos de electricidad, se les denomina la positiva y la negativa. Si dos cuerpos poseen igual tipo de carga se repelen en tanto que si tienen cargas de distinto signo se atraen.
En sus experimentos de electrólisis, Faraday determinó la proporcionalidad entre la cantidad de sustancias transformadas y la cantidad de electricidad empleada. Surge la noción que la corriente eléctrica es un flujo de partículas que se les llamó electrones.
Thompson demuestra experimentalmente, con el tubo de rayos catódicos la existencia de los electrones.
Tubo de rayos catódicos
Los electrones resultan ser partículas de carga eléctrica negativa cuya razón:
Carga
_________________ = 1,76 . 10 8 (Coulomb / gramo)
Masa
Millikan determina la carga eléctrica del electrón en su clásico experimento de la gota de aceite.
Experimento de la gota de aceite de Millikan
Así la carga del electrón se establece en 1,6 . 10 -19 coulomb y su masa en 9,1. 10 –28 gramos.
LAS PARTICULAS INTRATOMICAS FUNDAMENTALES
Rutherford, bombardea una lámina de oro, con rayos a ( partículas "pesadas", cargadas positivamente)
Experimento de Rutherford
Dispersión de los rayos a por lámina de oro
Rutherford concluye que la lámina de oro es prácticamente vacía, o mejor, el átomo de oro concentra toda su masa en un núcleo de carga positiva de volumen muy pequeño en relación al volumen atómico total.
Comprende la presencia en el núcleo del átomo, de los protones, partículas cargadas positivamente y de masa mayor que la del electrón y que ya habían sido detectadas con el tubo de Thompson. También se comprende la presencia en el nucleo de los neutrones, partículas de igual masa que el protón pero sin carga eléctrica.
El nucleo, por la presencia de los protones, tiene carga positiva y por esta razón atrae los electrones (cargas negativas) que giran a su alrededor en órbitas semejantes, en una primera aproximación a las órbitas planetarias del sistema solar.
LA VISION ATOMICA DE RUTHERFORD
NOMENCLATURA PARA SISTEMAS ATOMICOS Y SUS MODIFICACIONES.
NUMERO MÁSICO CARGA ELÉCTRICA O ESTADO DE OXIDACIÓN A CARGA
SÍMBOLO S
NÚMERO ATÓMICO ATOMICIDAD Z X
DEFINICIONES
NÚMERO ATÓMICO = NÚMERO DE PROTONES = Z
NÚMERO MÁSICO = NÚMERO DE PROTONES + NÚMERO DE NEUTRONES = A
CARGA ELECTRICA = NÚMERO DE PROTONES - NÚMERO DE ELECTRONES
7 0 7 +1
Li = Li + e-
3 3
ión positivo
7 +1 7 -2
Li + 3 e- = Li
3 3
ión negativo
7 0 4 0
Li = He + 2 n 0 + p+ + e-
3 2
Ión : Atomo o grupo de atomohttp://www.blogger.com/post-create.g?blogID=8810408610269926879#s cargados eléctricamente.
Suscribirse a:
Comentarios (Atom)